

Administración Contratante: **CONCELLO DE VIGO**

Plaza do Rei nº1 36202 VIGO

DOCUMENTO

Plan de Acción Contra el Ruido (PAR) del Concello de Vigo

4ª Fase

TIPO	DOCUMENTO	FECHA
MEMORIA DESCRIPTIVA	Plan de Acción contra el Ruido del municipio de Vigo (4ª Fase de aplicación de la Directiva 2002/49/CE)	20/08/2025

ÍNDICE

1.	OBJ	IETO	4
2.	DAT	TOS IDENTIFICATIVOS DEL PAR	5
3.	AUT	TORIDAD RESPONSABLE	6
4.	CON	NTEXTO JURÍDICO	7
	4.1. L	LEGISLACIÓN EUROPEA	7
	4.2. L	LEGISLACIÓN NACIONAL	7
	4.3. L	LEGISLACIÓN AUTONÓMICA	9
	4.4. L	LEGISLACIÓN LOCAL	9
	4.5.	OBJETIVOS DE REDUCCIÓN DE RUIDO DEL PAR	10
5.	DES	SCRIPCIÓN DE LA AGLOMERACIÓN	11
	5.1.	DESCRIPCIÓN GENERAL	11
	5.2.	DATOS DEMOGRÁFICOS	13
	5.2.1.	Población por parroquias	13
	5.2.2.	, , , ,	
	5.2.3.	Centros docentes	14
6.	RES	SULTADOS DEL MER (4ª FASE)	15
		FUENTES DE RUIDO CONSIDERADAS	
	6.1.1.		
	6.1.1. 6.1.2.	, ,	
	6.1.3.		
		EXPOSICIÓN DE LA POBLACIÓN AL RUIDO	
	6.2.1.		
	6.2.2.		
	•	2.2.1. Ruido viario	
	6.2	2.2.2. Ruido industrial	
	6.2	2.2.3. Ruido ferroviario	21
	6.3. F	PROBLEMAS IDENTIFICADOS Y SITUACIONES A MEJORAR	22
	6.3.1.	Fuente de ruido predominante	22
	6.3.2.		
	6.3.3.	- · · · · · · · · · · · · · · · · · · ·	
	6.3.4.	Zonas de ocio	29
7.	ZON	NAS TRANQUILAS	30
8.	PRC	OGRAMAS EN ACCIÓN Y PREVISTOS	32
	8.1. F	PROGRAMAS EJECUTADOS Y EN PROCESO	
	8.1.1.		
	8.1.2.	==,	
	8.1.3.	9 9 9	
	8.1.4.		
	8.1.5.		_
		ESTRATEGIA Y PROGRAMAS EN CURSO (CORTO PLAZO)	
		ESTRATEGIA A MEDIO Y LARGO PLAZO	
		MEDIDAS PREVISTAS PARA EL PLAN DE ACCIÓN CONTRA EL RUIDO	
	8.4.1.		
	8.4.2. 8.4.3.	-	
9.	SIN.	TESIS DE RESULTADOS DEL PAR	58
		SÍNTESIS GENERAL	
	9.2. F	RESULTADOS DE LA APLICACIÓN DE LAS MEDIDAS DEL PAR	58
	9.3. I	NDICADORES DE RIESGO PARA LA SALUD	60
10). CON	NCLUSIONES	61

11. ANI	XO I. PROCESO DE SELECCION DE ZONAS TRANQUILAS	64
11.1.	DEFINICIÓN	64
11.2.	SOBRE EL SONIDO, EL RUIDO Y EL CONCEPTO DE ZONA TRANQUILA	64
11.3.	VALORES LÍMITE	65
11.3.1		
11.3.2	Propuesta de límites para la declaración de Zona Tranquila en el municipio de Vigo	66
11.4.	METODOLOGÍA	
11.5.	REVISIÓN PRELIMINAR DE LAS ZONAS CANDIDATAS	
11.6.	ANÁLISIS DE LAS PROPUESTAS DE ZONAS TRANQUILAS	70
11.6.1	. Espacios naturales	71
11	.6.1.1. Islas Cíes	71
11	.6.1.2. Xunqueira do Lagares	72
11	.6.1.3. Praia do Vao	74
11.6.2	Parques urbanos	76
11	.6.2.1. O Castro	
11	.6.2.2. A Guía	_
11.6.3		
	.6.3.1. Parques de Coruxo, Saiáns y San Miguel de Oia	
	.6.3.2. Parque de Beade	
	.6.3.3. Parque forestal del Monte Alba y Mirador do Cepudo	
	.6.3.4. Parque forestal de Zamáns	
	.6.3.5. O Vixiador	
	.6.3.6. A Madroa	
	.6.3.7. Os Pozos	
11.6.4		_
	.6.4.1. Cabo Estay	
	.6.4.2. Isla de Toralla	
11.7.	DELIMITACIÓN CARTOGRÁFICA DE LAS ZONAS TRANQUILAS	
11.8.	RESUMEN DE ZONAS TRANQUILAS	
11.8.1	and the same of th	
11.8.2		
11.8.3	B. Delimitación cartográfica de las Zonas Tranquilas	102
12. ANI	EXO II. METODOLOGÍA DE CÁLCULO DE LOS INDICADORES DE RIESGO PARA LA SALUD.	
12.1.	DEFINICIONES	
12.2.	METODOLOGÍA DE CÁLCULO	103
12.2.1		
12.2.2	Cálculo de los Riesgos Relativos y Absolutos	104
12	.2.2.1. Cálculo de los riesgos	
12	.2.2.2. Cálculo de la Fracción Atribuible de Población con riesgo de ECI	
	.2.2.3. Cálculo de la Fracción de Población con Molestias Intensas por exposición a ruido	
12	.2.2.4. Cálculo de la Fracción de Población con Alteraciones Graves de Sueño	
12.3.	RESUMEN DE INDICADORES DE RIESGO PARA LA SALUD POR EXPOSICIÓN AL RUIDO	111

1. OBJETO

Vigo es, en la actualidad, el municipio más poblado de la comunidad autónoma de Galicia, al contar con una población total de 291.082 habitantes, según los datos censales publicados en diciembre de 2021. En términos de legislación acústica, esto implica que Vigo tiene consideración de *aglomeración*, por tratarse de una porción de territorio de un Estado miembro de la Unión Europea, con más de 100.000 habitantes y con una densidad de población tal que la administración correspondiente y el Estado miembro la consideran zona urbanizada. Esta característica clasifica a Vigo como una *Unidad de Mapa Estratégico* (U.M.E.) y, por ello, el Concello del municipio es el responsable de elaborar tanto el Mapa Estratégico de Ruido (M.E.R.) como el Plan de Acción contra el Ruido (P.A.R.) de la aglomeración, así como de sus correspondientes revisiones cada 5 años.

Este documento tiene por **objeto**, por tanto, describir el **Plan de Acción contra el Ruido** de la *aglomeración* de Vigo, como parte de la revisión correspondiente a la **4ª Fase** de aplicación establecida en la Directiva 2002/49/CE europea, sobre evaluación y gestión de ruido ambiental. El Plan toma como punto de partida los resultados obtenidos en la última revisión del M.E.R. de Vigo y su documento debe contener, al menos, los puntos indicados en el Anexo V de la Directiva 2002/49/CE, que se resumen a continuación:

- Descripción de la aglomeración, principales ejes viarios, ferroviarios y aeroportuarios, así como otras fuentes de ruido relevantes (actividades industriales, focos puntuales, etc.);
- Autoridad responsable de la elaboración y aprobación del Plan;
- Contexto jurídico;
- Valores límite establecidos;
- Planes y programas de lucha contra el ruido ejecutados en el pasado y medidas vigentes;
- Fechas estimadas de aprobación y finalización del Plan;
- Número total estimado de personas que se benefician de las actuaciones incluidas en el Plan;
- Resumen de los resultados del Mapa Estratégico de Ruido, correspondientes a la actualización de la 4º fase, así como principales problemas detectados y situaciones que se deben corregir;
- Resumen de las alegaciones recibidas en la información pública;
- Resumen de las actuaciones propuestas;
- Resumen de los indicadores propuestos para el seguimiento de la implementación y resultados del Plan.

En línea con los P.A.R. presentados en las fases 1ª (año 2007), 2ª (año 2013) y 3ª (año 2018), el Concello de Vigo continúa en esta 4ª fase con una línea de crecimiento basada en el desarrollo sostenible del municipio, no sólo en términos de crecimiento económico, sino también y muy especialmente en lo referido a la protección del medio ambiente en materia de contaminación acústica, y a la procura del confort, el bienestar social y la convivencia de sus habitantes.

2. DATOS IDENTIFICATIVOS DEL PAR

TÍTULO DEL PLAN DE ACCIÓN

Identificador Único AP_AG_ES_11_36057

Identificador único de la Zona de Cobertura 1

del PAR

FECHAS RELEVANTES DEL PAR DE APROBACIÓN

Fechas de Aplicación del PAR Inicio: 18/01/2025 Fin: 18/01/2030

Tabla 1. Datos identificativos del PAR de Vigo

3. AUTORIDAD RESPONSABLE

La autoridad principal responsable de la revisión tanto del Mapa Estratégico de Ruidos como del correspondiente Plan de Acción contra el Ruido de la *aglomeración*, es el propio Concello de Vigo, a través del área de Medio Ambiente.

Nombre de la Autoridad	CONCELLO DE VIGO Concejalía de Medio Ambiente		CONCELLO DE VIGO		
Datos generales	Dirección:	Praza do Rei, 1. 36201. Vigo	o (Pontevedra)		
	Teléfono:	988 810 100			
	Web:	www.vigo.org			
Persona responsable de elaborar el PAR	Nombre:	Nuria Rodríguez Rodríguez			
	Cargo:	Concejala Delegada de Medio Ambiente			
Órgano responsable de aprobar el PAR	Órgano:	Junta de Gobierno local			
Persona de contacto	Nombre:	Secundino Otero Faílde			
	Cargo:	Responsable del Área de Medio Ambiente			
	Teléfono: +34 986 810 210				
	E-mail:	dino.otero@vigo.org			

Tabla 2. Datos relativos a la Autoridad Responsable del PAR de Vigo

Adicionalmente, en aquellas zonas afectadas por infraestructuras de distinta titularidad pública, será necesaria la coordinación y colaboración de los diferentes órganos gestores (Xunta de Galicia, Ministerio de Fomento, Ministerio para la Transición Ecológica, etc.) para analizar la problemática y definir las actuaciones en las áreas de conflicto, conforme a lo recogido en el artículo 11 del Real Decreto 1513/2005, de 16 de diciembre, en el que se hace referencia a la colaboración en la elaboración de mapas estratégicos de ruido y planes de acción.

4. CONTEXTO JURÍDICO

4.1. LEGISLACIÓN EUROPEA

La entrada en vigor de la Directiva 2002/49/CE del Parlamento Europeo y del Consejo, de 25 de junio de 2002, sobre evaluación y gestión de ruido ambiental, define el marco común aplicable a todos los Estados miembros para la evaluación y gestión de la exposición a ruido ambiental de sus territorios. Con esta finalidad, la Directiva requiere a los Estados la aplicación de una serie de medidas, tanto correctoras como preventivas, entre las que destaca la elaboración de los correspondientes cartografiados de ruido.

La Directiva refleja la necesidad de establecer métodos comunes de evaluación, así como de definir valores límite y objetivos de calidad acústica, en función de indicadores armonizados mediante los cuales calcular los niveles de ruido. En este sentido, los indicadores de ruido comunes que propone son el L_{den} (indicador de ruido día-tarde-noche) para evaluar molestias, y el L_n o L_{night} (indicador de ruido en período nocturno) para evaluar alteraciones de sueño. También se indica que será útil permitir que los Estados miembros empleen indicadores adicionales, tales como el L_d o L_{day} (indicador de ruido en período diurno) y el L_e o L_{evening} (indicador de ruido en período de tarde), así como otros indicadores suplementarios para analizar situaciones especiales de ruido.

Esta Directiva se complementó con la conocida como Recomendación de 6 de agosto de 2003 relativa a las Orientaciones sobre los métodos de cálculo provisionales revisados para el ruido industrial, procedente de aeronaves, del tráfico rodado y ferroviario y los datos de emisiones correspondientes, donde se establecen los métodos estándar de cálculo para la evaluación de los diferentes focos de ruido. En particular, la Comisión Europea decidió desarrollar un método común armonizado para la evaluación del ruido generado por el tráfico viario, ferroviario y aeroportuario, así como por las actividades y focos industriales. A este método se le ha denominado CNOSSOS-EU (Common NOise aSSessment methOdS) y su principal objetivo es el establecimiento de una metodología común para la realización de los Mapas Estratégicos de Ruido, de tal modo que los resultados obtenidos en cada Estado Miembro sean fiables, realistas y que además puedan ser comparables entre sí. El método CNOSSOS-EU aporta, además, una herramienta fundamental para el cálculo general de los niveles de ruido que generan los citados focos, así como para la evaluación de la exposición de la población al ruido ambiental. Esta información permitirá a los Estados Miembros detectar el grado de afección acústica de cualquier entorno y diseñar en consonancia los planes de acción de lucha contra el ruido, con mayor precisión y eficiencia de lo que se obtenía con la metodología empleada hasta la fecha.

4.2. LEGISLACIÓN NACIONAL

El Estado español llevó a cabo la transposición de la Directiva 2002/49/CE a través de la Ley 37/2003 de 17 de noviembre, del Ruido, integrando todas las exigencias establecidas en ella, incluyendo la realización de los mapas de ruido, así como las pautas y competencias para la gestión del ruido ambiental. En particular, el artículo 14 de dicha ley establece la obligatoriedad de elaborar los mapas de ruido correspondientes, entre otros, a grandes aglomeraciones, entendiendo por tales los municipios con una población superior a 100.000 habitantes y con una densidad de población superior a la que se determina reglamentariamente.

La Ley 37/2003 del Ruido se desarrolla parcialmente en el Real Decreto 1513/2005, de 16 de diciembre, en lo referente a la evaluación y gestión del ruido ambiental. En él se define el marco básico destinado a evitar, prevenir o reducir con carácter prioritario los efectos nocivos, incluyendo las molestias, de la exposición al ruido ambiental y completar la incorporación al ordenamiento jurídico español de la

Directiva 2002/49/CE sobre evaluación y gestión de ruido ambiental. Para ello, el Real Decreto 1513/2005 establece las pautas para la elaboración de Mapas Estratégicos de Ruido (M.E.R.), con los que determinar el grado de exposición de un territorio y de su población al ruido ambiental, y para la adopción de Planes de Acción, con los que prevenir y reducir dicho efecto, especialmente cuando los niveles de exposición puedan tener efectos nocivos para la salud humana.

El Real Decreto 1367/2007, de 19 de octubre, por el que se desarrolla la Ley 37/2003 del Ruido, en lo referente a zonificación acústica, objetivos de calidad y emisiones acústicas, define los índices de ruido en los diferentes periodos temporales de evaluación, así como sus aplicaciones, efectos y molestias sobre la población y su repercusión en el medio ambiente. Este Real Decreto delimita, además, los distintos tipos de áreas y servidumbres acústicas, y establece los objetivos de calidad acústica para cada área y en el interior de las edificaciones del territorio según su uso. Asimismo, también regula los emisores acústicos en función de los valores límite de emisión o de inmisión, así como los procedimientos y los métodos de evaluación.

El Real Decreto 1038/2012, de 6 de julio, por el que se modifica el Real Decreto 1367/2007, establece en un artículo único una aclaración relativa a las zonas colindantes a las áreas acústicas *tipo f*, que comprenden los sectores del territorio afectados a sistemas generales de infraestructuras de transporte y otros equipamientos públicos que los reclamen. En particular, el texto recoge que en el límite perimetral de estos sectores del territorio no se podrán superar los objetivos de calidad acústica para ruido aplicables al resto de áreas acústicas colindantes con ellos.

	Tipo de área acústica			Índices de ruido		
				Ln		
е	requiera una especial protección contra la contaminación acústica.	60	60	50		
а	Sectores del territorio con predominio de suelo de uso residencial.	65	65	55		
d	Sectores del territorio con predominio de suelo de uso terciario distinto del contemplado en c).	70	70	65		
С	Sectores del territorio con predominio de suelo de uso recreativo y de espectáculos.	73	73	63		
b	Sectores del territorio con predominio de suelo de uso industrial.	75	75	65		
f	Sectores del territorio afectados a sistemas generales de infraestructuras de transporte, u otros equipamientos públicos que los reclamen. (1)	(2)	(2)	(2)		

- (1) En estos sectores del territorio se adoptarán las medidas adecuadas de prevención de la contaminación acústica, en particular mediante la aplicación de las tecnologías de menor incidencia acústica de entre las mejores técnicas disponibles, de acuerdo con el apartado a), del artículo 18.2 de la Ley 37/2003, de 17 de noviembre.
- (2) En el límite perimetral de estos sectores del territorio no se superarán los objetivos de calidad acústica para ruido aplicables al resto de áreas acústicas colindantes con ellos.

Nota: Los objetivos de calidad aplicables a las áreas acústicas están referenciados a una altura de 4 m.

Tabla 3. Objetivos de calidad acústica para ruido aplicables a áreas urbanizadas existentes (fuente: R.D. 1367/2007)

La Tabla 3 hace referencia a índices de ruido globales anuales, correspondientes a los diferentes periodos en que se clasifica el día, esto es, L_d para el periodo día (7-19h), L_e para el periodo tarde (19-23h) y L_n para el periodo noche (23-7h). A partir de estos tres índices se obtiene el índice de ruido díatarde-noche, conocido como L_{den} , asociado a la molestia global y calculado a partir de la siguiente expresión:

$$L_{den} = 10 \cdot log \left[\frac{1}{24} \cdot \left(12 \cdot 10^{L_d/10} + 4 \cdot 10^{(L_e+5)/10} + 8 \cdot 10^{(L_n+10)/10} \right) \right]$$

Ecuación 1. Cálculo del índice L_{den} a partir de los índices L_d, L_e y L_n

Estos 4 índices son los tomados habitualmente como referencia para la elaboración de estudios, mapas de ruido y mapas estratégicos de ruido, con los que determinar y predecir la exposición de un área y de su población al ruido ambiental.

Los objetivos de calidad acústica indicados en la Tabla 3 son aplicables a **áreas urbanizadas ya existentes** a fecha de publicación del Real Decreto 1367/2007. Para el **resto de zonas urbanizadas**, los objetivos de calidad acústica se establecen en los niveles de dicha tabla, pero **disminuidos en 5 decibelios**, según se indica en el punto 2 del artículo 14 del Real Decreto 1367/2007.

Los objetivos de calidad acústica para ruido aplicables a los **espacios naturales delimitados**, de conformidad con lo establecido en el artículo 7.1 la Ley 37/2003, de 17 de noviembre, como área acústica *tipo g*, por requerir una especial protección contra la contaminación acústica, se establecerán para cada caso en particular, atendiendo a aquellas necesidades específicas de los mismos que justifiquen su calificación.

Asimismo, como objetivo de calidad acústica aplicable a las **zonas tranquilas** en las aglomeraciones y en campo abierto, se establece el mantener en dichas zonas los niveles sonoros por debajo de los valores de los índices de inmisión de ruido establecidos en la Tabla 3, **disminuido en 5 decibelios**, tratando de preservar la mejor calidad acústica que sea compatible con el desarrollo sostenible.

4.3. LEGISLACIÓN AUTONÓMICA

La entrada en vigor en Galicia del Decreto 106/2015, de 9 de julio, sobre contaminación acústica de Galicia, establece las competencias para la elaboración, tramitación, aprobación y revisión de los mapas de ruido y planes de acción en materia de contaminación acústica correspondientes a aglomeraciones de ámbito supramunicipal. Asimismo, también establece las relativas a la gestión de toda la información sobre contaminación acústica de Galicia, a la remisión de los mapas de ruido y planes de acción a la Administración central del Estado, al control del cumplimiento de la normativa acústica y de la adopción de las medidas correctoras necesarias, y a la elaboración de programas de formación y educación ambiental, tanto de la ciudadanía como de los técnicos y agentes competentes de la Administración autonómica.

En lo relativo a la clasificación y zonificación de áreas acústicas en Galicia, el Decreto 106/2015 se remite a los tipos y criterios establecidos en la Ley 37/2003 y en el Real Decreto 1367/2007. El decreto establece además que los instrumentos de ordenación territorial y de planeamiento urbanístico deben incorporar la zonificación acústica del territorio, teniendo en cuenta la eventual existencia de zonas de servidumbre y de reservas acústicas de origen natural, adoptando medidas necesarias para lograr la compatibilidad, a efectos de calidad acústica, entre las distintas áreas acústicas y entre éstas y las citadas servidumbres y reservas.

4.4. LEGISLACIÓN LOCAL

El 25 de febrero de 2008 el Concello de Vigo aprobó en Pleno la modificación de la Ordenanza municipal de protección del medio contra la contaminación acústica producida por la emisión de ruidos y vibraciones, para proteger a las personas y a los bienes contra las agresiones producidas por dichas emisiones.

Si bien la Ordenanza se centra principalmente en la protección del exterior frente a nuevas actividades, así como de los recintos que colindan con éstas, también establece la necesidad de realizar estudios de impacto acústico previos a la ejecución de cualquier obra, instalación o actividad. En particular, el documento especifica que todos los proyectos de nueva construcción de autopistas, carreteras y vías

de acceso a núcleos urbanos, o remodelación de los ya existentes, deben incluir un estudio de impacto ambiental del ruido en el que se incluyan las medidas correctoras que contribuyan a minimizar la afección acústica en su entorno. Del mismo modo, todos los documentos de planeamiento para núcleos urbanos y urbanizables situados cerca de ejes viarios deben prever la inclusión de medidas para corregir el impacto ambiental.

La Ordenanza también hace referencia específica a la necesidad de adopción de medidas correctoras para la eliminación o reducción de los niveles de ruido procedentes de actividades industriales.

También el 25 de febrero de 2008 se aprobó en Pleno la Declaración de Zonas Acústicamente Saturadas (ZAS) de Vigo, y el protocolo de actuación en dichas zonas para el control en las mismas del nivel de ruido derivado principalmente de las actividades y locales de ocio nocturno.

4.5. OBJETIVOS DE REDUCCIÓN DE RUIDO DEL PAR

En el documento referencia de las instrucciones de entrega de los Planes de Acción contra el Ruido (PAR) de la 4ª fase, redactado por el Ministerio para la Transición Ecológica y el Reto Demográfico, se indica que las autoridades competentes deberán establecer los objetivos de reducción y mejora de la situación acústica que da origen al PAR. En dicho documento se indica además que, en base a las ambiciones del *Pacto Verde* en sinergia con otras iniciativas, de aquí al año 2030 la Unión Europea debe reducir en un 30% el porcentaje de población que sufre molestias crónicas por el ruido del transporte.

No obstante, según se indica en las instrucciones de entrega, el objetivo de **reducción del 30%** de las personas crónicamente afectadas por el ruido de transporte **resulta improbable** debido al gran número de personas expuestas al ruido del tráfico rodado y a los medios disponibles para la reducción de ruido, y establece que, con una adecuada combinación de medidas, **se podría lograr una reducción del 3% al 15%** de las personas expuestas al ruido. Por ello, como medida realista en el presente PAR, se establece como objetivo una reducción dentro de este último rango.

Asimismo, en base a los documentos citados, para el análisis de la efectividad de las medidas establecidas en el presente Plan de Acción contra el Ruido, se emplean los valores límite recomendados por la Directiva 2002/49/EC (END) de **55 dBA** para los periodos de **día, tarde y 24 horas** (índices L_d, L_e y L_{den}) y de **50 dBA** para el periodo de **noche** (índice L_n). Además de estos, se evalúan los **indicadores de riesgo para la salud** debidos al ruido establecidos por la OMS, a saber, las Enfermedades Cardíacas Isquémicas (**ECI**), las Molestias Intensas (**MI**) y las Alteraciones Graves del Sueño (**AGS**), evaluados en los umbrales recomendados por la OMS.

Expresión Rango de aplicabilidad		Recomendaciones de reducción OMS		
ECI,vial	A partir de 53 dB(A) Lden	53 dB(A) Lden		
RA _{MI,i,vial}	46-80 dB(A) Lden	53 dB(A) Lden		
RA _{MI,i,ferroviario}	36-80 dB(A) Lden	54 dB(A) Lden		

Tabla 4. Relaciones Dosis Efecto OMS, rangos de aplicabilidad y recomendaciones de reducción de ruido (fuente: Instrucciones para la entrega de los datos asociados a los mapas estratégicos de ruido y planes de acción contra el ruido de la 4º Fase)

En el presente Plan de Acción contra el Ruido se toma, por tanto, el **objetivo de reducción de ruido entre el 3% y el 15%**, aplicados tanto a los **indicadores de riesgo para la salud** de la **OMS** como a los **valores límite** de exposición según la directiva **END** mencionados anteriormente. Asimismo, con el objeto de comparar los resultados de aplicar las medidas del PAR con los obtenidos en el MER de 4ª Fase, se realizará un análisis adicional sobre los valores de referencia analizados en el MER, a saber, 65 dBA en los periodos de día, tarde y 24 horas, y de 55 dBA en el periodo de noche.

5. DESCRIPCIÓN DE LA AGLOMERACIÓN

5.1. DESCRIPCIÓN GENERAL

Vigo es un Concello situado en la mitad de la Ría de Vigo, la más al sur de las Rías Baixas, en la provincia de Pontevedra, dentro de la Comunidad Autónoma de Galicia. La Unidad de Mapa Estratégico (UME) objeto del presente PAR es, por tanto, la propia aglomeración comprendida por los límites municipales de Vigo, con identificador único **AG_ES_11_36057**.

Figura 1. Ubicación y límites del término municipal de Vigo

El término municipal abarca tanto los límites terrestres como los que delimitan el archipiélago de las Cíes, compuesto por tres islas: la Isla de Monteagudo o *Illa Norte*, la Isla Do Faro o *Illa do Medio* y la Isla de San Martiño o *Illa Sur*. Entre las tres islas suman una superficie aproximada de 4,5 km² y cuentan únicamente con 2 habitantes, según los datos censales empleados para la realización del presente estudio. El resto de la población de Vigo, superior a los 290.000 habitantes, se reparte sobre los aproximadamente 105,5 km² de superficie interior de un municipio con orografía en general accidentada y a lo largo de las 18 parroquias que componen su territorio.

^[1] Aproximadamente 4,5 ${\rm km}^2$ corresponden a la superficie de las Islas Cíes.

Tabla 5. Características generales del municipio de Vigo (fuente: Concello de Vigo)

^[2] Datos censales de población correspondientes a diciembre de 2021. [3] 2.758 hab./km² sin contar con la superficie de las Islas Cíes.

En términos territoriales, el municipio de Vigo se articula de la siguiente manera: su territorio se divide en 18 parroquias (que no tienen por qué coincidir con las eclesiásticas), que se dividen a su vez en barrios (lo que en otros Concellos se conocen como aldeas o lugares), y los barrios en lugares. Las parroquias viguesas conservan todavía un fuerte carácter propio (la de Bembrive es, por ejemplo, Entidad Local Menor) y gozan de una activa vida asociativa. Esta estructura en parroquias se toma como referencia para la realización de cálculos y los análisis del Mapa Estratégico de Ruidos de Vigo.

1	ALCABRE	7	CENTRO(*)	13	OIA
2	BEADE	8	COMESAÑA	14	SAIÁNS
3	BEMBRIVE	9	CORUXO	15	SÁRDOMA
4	CABRAL	10	LAVADORES	16	TEIS
5	CANDEÁN	11	MATAMÁ	17	VALLADARES
6	CASTRELOS	12	NAVIA	18	ZAMÁNS

^(*) Tanto la información aportada por el Concello de Vigo como la publicada por el Instituto Nacional de Estadística agrupan administrativamente las tradicionales parroquias de Bouzas, Coia y Freixeiro como parte del Centro urbano de Vigo.

Tabla 6. Relación de parroquias administrativas del municipio de Vigo

Figura 2. Distribución geográfica de las parroquias que componen el municipio de Vigo

Las parroquias de Vigo se caracterizan por poseer muy diversa extensión, orografía y densidad de población. Así, cerca del 58% de la población del municipio se concentra en la parroquia del Centro de Vigo, mientras que sólo siete parroquias abarcan casi el 55% de la superficie del municipio, como son las de Valladares, Cabral, Bembrive, Coruxo, Zamáns, Beade y Lavadores.

ID.	PARROQUIA	SUP	SUPERFICIE		POBLACIÓN	
		%	Km²	%	Habitantes	(Habit./Km²)
1	ALCABRE	1,8%	2,0	2,0%	5.893	2.904
2	BEADE	6,6%	7,3	2,1%	6.151	847
3	BEMBRIVE	8,3%	9,1	1,6%	4.660	512
4	CABRAL	8,5%	9,4	2,4%	7.121	758
5	CANDEÁN	5,1%	5,6	1,2%	3.509	631
6	CASTRELOS	2,2%	2,4	2,7%	7.870	3.244
7	CENTRO DE VIGO	9,4%	10,4	57,8%	168.124	16.201
8	COMESAÑA	3,5%	3,9	2,2%	6.486	1.673
9	CORUXO	7,7%	8,5	2,1%	6.031	710
10	LAVADORES	6,0%	6,7	8,1%	23.558	3.541
11	MATAMÁ	3,6%	3,9	1,3%	3.712	940
12	NAVIA	2,0%	2,2	2,1%	6.226	2.779
13	OIA	4,3%	4,7	1,4%	3.974	846
14	SAIÁNS	1,8%	2,0	0,4%	1.168	591
15	SÁRDOMA	2,3%	2,6	2,0%	5.688	2.211
16	TEIS	5,2%	5,7	8,4%	24.573	4.306
17	VALLADARES	10,6%	11,6	1,8%	5.367	462
18	ZAMÁNS	6,9%	7,6	0,3%	970	127
	TOTAL PARROQUIAS	96,0%	105,5	99,9993%	291.080	2.758
IC1	ISLAS DE FARO Y MONTEAGUDO	2,7%	3,0	0,00035%	1	0,3
IC2	ISLA DE SAN MARTIÑO	1,3%	1,5	0,00035%	1	0,7
	TOTAL ISLAS CÍES	4,0%	4,5	0,0%	2	0,4
	TOTAL VIGO	100%	110	100%	291.082	2.647

Tabla 7. Datos demográficos del término municipal de Vigo (fuente: censo Vigo 12/2021)

5.2. DATOS DEMOGRÁFICOS

Para la realización del Mapa Estratégico de Ruidos de la aglomeración de Vigo, correspondiente a la 4ª fase de aplicación de la Directiva 2002/49/CE, se tienen en cuenta los datos demográficos oficiales del término municipal proporcionados por el Concello de Vigo, actualizados a diciembre de 2021. En este apartado se desglosan no sólo los datos demográficos globales y desglosados por parroquias, sino también los relativos a los diferentes centros sanitarios y a los múltiples centros docentes del municipio.

5.2.1. Población por parroquias

La Tabla 7 muestra los datos censales de Vigo, distribuidos según las diferentes parroquias en que se divide el municipio. Tal y como se puede ver en dicha tabla, la parroquia que va a condicionar de manera global la exposición acústica de la población de Vigo será principalmente la del Centro urbano de la ciudad, donde residen casi el 60% de los habitantes censados y, en segundo término, las de Lavadores y Teis.

A fecha de realización de la 4ª Fase del MER de la aglomeración, se registran un total de 143.638 viviendas y 30.912 edificios habitados, de los cuales aproximadamente un 33% son edificaciones de hasta 3 alturas, un 25% son edificaciones de entre 3 y 8 alturas, un 35% son edificaciones de entre 9 y 12 alturas y el resto (en torno a un 7%) son edificaciones más altas.

5.2.2. Centros sanitarios

Según los datos disponibles en el Catálogo Nacional de Hospitales, en el término municipal de Vigo se contabiliza una decena de centros hospitalarios, entre los cuales suman un total de 2.247 camas

disponibles, siendo el Hospital Álvaro Cunqueiro el de mayor capacidad, al disponer por sí solo de cerca del 38% de dichas camas.

CENTRO SANITARIO	Nº C	AMAS
Hospital Álvaro Cunqueiro	37,6%	845
Hospital Meixoeiro	16,0%	360
Hospital Nicolás Peña	3,0%	68
Hospital Ribera Povisa	25,5%	573
Hospital Vithas Vigo	8,9%	200
Hospital FREMAP Vigo	0,8%	17
Centro Médico Concheiro	1,8%	40
Centro Médico Pintado	0,5%	12
Clínica Residencial El Pinar	3,7%	84
Centro de Salud Mental Hestia San José	2,1%	48
TOTAL		2.247

Tabla 8. Centros sanitarios y nº de camas disponibles

5.2.3. Centros docentes

En lo que respecta a edificaciones de tipo docente, se contabilizan en todo el término municipal de Vigo un total de 123 centros para educación infantil, primaria, secundaria y universitaria, con las distribuciones de alumnos mostradas en la siguiente tabla, registrando entre todos ellos un total de 46.240 matriculados.

TIPO DE CENTRO	Nº CENT	TROS	Nº MATRI	CULADOS
Escuela de Educación Infantil (EEI)	5,7%	7	1,0%	478
Colegio de Educación Infantil y Primaria (CEIP)	35,0%	43	20,1%	9.289
Colegio Público Rural (CPR)	35,0%	43	38,9%	17.978
Instituto de Enseñanza Secundaria (IES)	13,0%	16	15,8%	7.306
Universidad de Vigo – Campus Vigo	11,4%	14	24,2%	11.189
TOTAL		123		46.240

Tabla 9. Centros docentes y número de matriculados en 2021

6. RESULTADOS DEL MER (4º FASE)

6.1. FUENTES DE RUIDO CONSIDERADAS

Las principales fuentes de ruido consideradas para la actualización del Mapa Estratégico de Ruidos de la aglomeración de Vigo, en la 4ª Fase de aplicación de la Directiva 2002/49/CE, son las que conforman el **tráfico viario**, el **tráfico ferroviario** y los diferentes focos de ruido asociados a la **actividad industrial** que tiene lugar dentro del municipio.

6.1.1. Principales ejes viarios

Vigo es un municipio situado al suroeste de la comunidad autónoma de Galicia y a escasos 35 km de la frontera con Portugal. Su territorio lo atraviesa una amplia red de infraestructuras de transporte que permiten el acceso y la movilidad tanto a residentes como a una elevada cantidad de trabajadores no residentes que operan diariamente dentro del término municipal.

Entre las principales infraestructuras destacan los siguientes *grandes ejes viarios*, entendiendo por tales a todas las carreteras regionales, nacionales o internacionales, con un tráfico superior a tres millones de vehículos por año:

- AP-9 o Autopista del Atlántico (E-1, según denominación europea), que une el municipio de Ferrol (A Coruña), al norte de la comunidad, con el de Tui (Pontevedra), situado al sur y colindante con Portugal. En la zona fronteriza, la AP-9 conecta con la A-55 en Tui y deriva directamente en la autopista portuguesa A3, que llega hasta Oporto.
 - En la parroquia de Teis, la AP-9 enlaza con la AP-9V, vía que absorbe principalmente el tráfico de entrada y salida de Vigo por la parte norte del municipio.
- A-55 o Autovía Vigo-Tui, que une las localidades de Vigo y Tui, enlazando en esta última con la AP-9 y posteriormente en la frontera con la autopista portuguesa A3. Entre las parroquias de Bembrive y Sárdoma, la A-55 enlaza con la Avenida de Madrid, una de las principales vías de comunicación con el centro de la ciudad desde o hacia el interior de la provincia.

El municipio cuenta además con otros ejes viarios de relevancia, que soportan elevadas intensidades de tráfico diario, entre los que destacan los dos siguientes:

- Autovía VG-20 o Segundo Cinturón, que rodea a Vigo por el sur-suroeste, conectando además con la AP-9 y con la AG-57 por el este, en la parroquia de Beade. Este eje aporta una vía de entrada y salida al centro de la ciudad por el oeste, a través de las parroquias de Navia y Comesaña.
- AG-57 o Autopista del Val Miñor, que enlaza con la VG-20 en la parroquia de Beade y conecta Vigo con los municipios vecinos de Gondomar, Nigrán y Baiona.

Figura 3. Principales ejes viarios de Vigo

Por último, Vigo cuenta también con diferentes avenidas, con importantes intensidades medias diarias de vehículos, que contribuyen a mantener la fluidez del tráfico en el municipio, como son la Avenida de Gran Vía, la Avenida del Arquitecto Palacios o Primer Cinturón, las avenidas del Alcalde Gregorio Espino y de Martínez Garrido, la Avenida García Barbón, las avenidas de Castrelos y de Castelao, o la Avenida de Beiramar, esta última con un porcentaje relevante de vehículos pesados. Adicionalmente, son múltiples las calles en la zona centro de Vigo con una elevada intensidad media diaria de tráfico, destacando la Rúa de Urzáiz, la Rúa Colón, la Rúa de Policarpo Sanz, la Rúa de Sanjurjo Badía, la Rúa de Pizarro o la Rúa de Travesía de Vigo.

6.1.2. Principales ejes ferroviarios

El municipio cuenta actualmente con dos estaciones de ferrocarril activas, situadas en la parroquia Centro de Vigo. La estación de Guixar, inicialmente destinada al tráfico de mercancías, pasó en 2011 a albergar también el tráfico de cercanías debido al cierre de la estación de Urzáiz con motivo de las obras relativas a las infraestructuras ferroviarias de alta velocidad. La reapertura de la estación de Urzáiz en el año 2015 sirvió para situar a Vigo en el extremo sur de la línea de alta velocidad Vigo-A Coruña, dentro del Eje Atlántico que conectará la frontera portuguesa con Ferrol, al norte de la comunidad gallega.

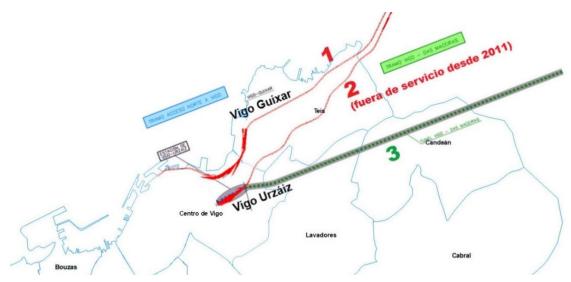


Figura 4. Líneas de ferrocarril en el municipio de Vigo. Línea convencional nº1 de Guixar, línea antigua nº2 de Urzáiz (fuera de servicio) y línea de alta velocidad nº3 de Urzáiz (subterránea)

El número anual de trenes que entran y salen de Vigo es inferior a 30.000, por lo que sus vías no tienen consideración de *grandes ejes viarios* en lo que a legislación acústica se refiere, encontrándose, por tanto, exento de la obligatoriedad de realizar un mapa de ruido específico de la infraestructura. En cualquier caso, el trazado subterráneo de las vías de entrada y salida de la nueva estación de Urzáiz, hasta más allá de los límites del término municipal, unido al trayecto costero y semisoterrado de las vías con origen o destino en Guixar, ha contribuido a reducir de manera considerable el impacto acústico del tráfico ferroviario sobre el terreno y los habitantes de Vigo.

6.1.3. Actividad industrial

Vigo cuenta con una importante actividad industrial, principalmente en torno a las localizaciones siguientes:

- Área portuaria de Bouzas, con una plataforma para vehículos del Grupo Stellantis, y astilleros de Coia;
- Puerto de Vigo en la zona centro, con astilleros y multitud de empresas asociadas al sector naval y pesquero, así como muelles de recreo, deportivos, muelles de gran calado y muelles comerciales;
- 3. Astilleros y muelles del Puerto de Vigo en Teis, con empresas destinadas a la construcción naval y al sector pesquero, así como muelles de diferente tipología;
- 4. Zona Franca, con actividad derivada principalmente de la fábrica del Grupo Stellantis situada en Balaídos;
- 5. Área industrial del Polígono do Caramuxo, con múltiples empresas de diferente índole;
- 6. Entorno de la Estrada de Camposancos, a continuación del Polígono do Caramuxo al suroeste del mismo, donde también se concentran numeras actividades industriales de todo tipo;
- 7. Parque Tecnológico y Logístico de Vigo, situado entre las parroquias de Beade y Valladares, con 875.000 m² de superficie y más de 80 empresas de diferentes sectores (textil, automóvil, logística, etc.).

Figura 5. Principales zonas industriales en el municipio de Vigo

6.2. EXPOSICIÓN DE LA POBLACIÓN AL RUIDO

6.2.1. Ruido total

Se muestra a continuación un resumen de la actualización del Mapa Estratégico de Ruidos de la aglomeración de Vigo, correspondiente a la 4ª Fase de aplicación de la Directiva 2002/49/CE, en lo relativo a exposición de la población al ruido total en el municipio, entendiendo por éste el debido a las fuentes de ruido viario, ferroviario e industrial, y calculado sobre las fachadas de las edificaciones residenciales, según lo establecido en la metodología aplicable. En la Tabla 10 se pueden ver las centenas de habitantes expuestos a los diferentes rangos de ruido.

NIVEL DE RUIDO	C	ENTENAS DE HAI EXPUESTOS AL	BITANTES DE VIG . RUIDO TOTAL	iO
(dBA)	DÍA	TARDE	NOCHE	24 HORAS
< 50	696	635	1.515	488
50 – 55	450	465	603	428
55 - 60	450	454	621	479
60 – 65	783	789	151	674
65 - 70	485	516	20	667
70 – 75	46	50	0	161
> 75	0	1	0	14

Tabla 10. Habitantes de Vigo expuestos (expresados en centenas), debido a la contribución conjunta de todas las fuentes de ruido consideradas (tráfico viario, tráfico ferroviario y actividad industrial)

Tomando como referencia principal los valores mostrados a continuación para los índices de **ruido nocturno**, L_n , y de **ruido global**, L_{den} , se concluye lo siguiente:

- ☑ El 48% de la población se ve expuesta a niveles globales de ruido nocturno, L_n, iguales o superiores a 50 dBA.
- ☑ El 69% de la población se ve expuesta a niveles globales de ruido día-tarde-noche, L_{den}, iguales o superiores a 55 dBA.

Adicionalmente, analizando los índices de ruido en los periodos de día, \mathbf{L}_{d} , y tarde, \mathbf{L}_{e} , se obtienen resultados similares, esto es:

- ☑ El 61% de la población se ve expuesta a niveles globales de ruido diurno, L_d, iguales o superiores a 55 dBA.
- ☑ El 62% de la población se ve expuesta niveles globales de ruido vespertino, L_e, iguales o superiores a 55 dBA.

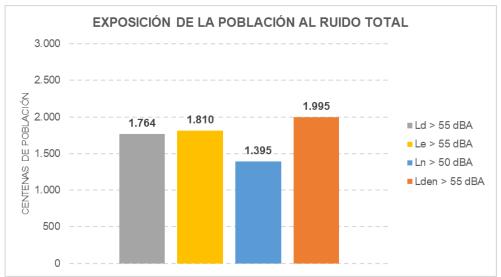


Tabla 11. Exposición a ruido total en centenas de población

PERIODO	CRITERIO DE ANÁLISIS	CENTENAS DE POBLACIÓN	PORCENTAJE DE POBLACIÓN
DÍA	L _d ≥ 55 dBA	1.764	60,6%
TARDE	$L_e \ge 55 \text{ dBA}$	1.810	62,2%
NOCHE	$L_n \ge 50 \text{ dBA}$	1.395	47,9%
24 HORAS	L _{den} ≥ 55 dBA	1.995	68,5%

Tabla 12. Indicadores generales acerca de la exposición de la población exposición al ruido total

6.2.2. Ruido por focos

Del mismo modo, a partir de los datos del MER de Vigo se analizan los resultados de población expuesta debido a cada una de las fuentes de ruido consideradas, esto es, las relativas a los ejes viarios, a los ejes ferroviarios y a las actividades industriales.

6.2.2.1. Ruido viario

Haciendo un análisis individual de cada una de las fuentes de ruido consideradas para la elaboración del MER, se concluye que el ruido global de Vigo viene determinado fundamentalmente por el tráfico viario que circula por las diferentes vías del municipio, y calculado sobre las fachadas de las edificaciones residenciales, según lo establecido en la metodología aplicable.

NIVEL DE RUIDO	CENTENAS DE HABITANTES DE VIGO EXPUESTOS A RUIDO VIARIO				
(dBA)	DÍA	TARDE	NOCHE	24 HORAS	
< 50	705	646	1.565	512	
50 – 55	455	467	585	425	
55 - 60	447	452	597	483	
60 – 65	774	781	145	666	
65 - 70	484	515	19	653	
70 – 75	45	50	0	159	
> 75	0	1	0	13	

Tabla 13. Habitantes de Vigo expuestos (expresados en centenas), debido al tráfico viario

La exposición de población al ruido viario supone prácticamente el 99% de la exposición al ruido total, tal y como se puede ver comparando los resultados de este apartado con respecto a los del apartado anterior. De nuevo, el ruido que genera el tráfico viario implica que entre el 60%-62% de la población se ve expuesta a niveles de ruido en fachada $L_d \ge 55$ dBA y $L_e \ge 55$ dBA, subiendo hasta casi el 68% en el caso del $L_{den} \ge 55$ dBA. Con respecto al periodo nocturno, algo más del 46% de la población de Vigo se ve expuesta a niveles de ruido en fachada $L_n \ge 50$ dBA.

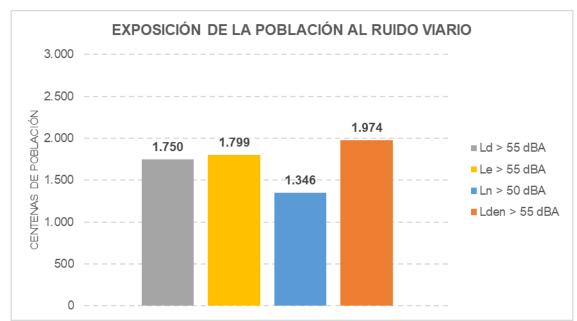


Tabla 14. Exposición a ruido viario en centenas de población

PERIODO	CRITERIO DE ANÁLISIS	CENTENAS DE POBLACIÓN	PORCENTAJE DE POBLACIÓN
DÍA	L _d ≥ 55 dBA	1.750	60,1%
TARDE	L _e ≥ 55 dBA	1.799	61,8%
NOCHE	L _n ≥ 50 dBA	1.346	46,2%
24 HORAS	L _{den} ≥ 55 dBA	1.974	67,8%

Tabla 15. Indicadores generales acerca de la exposición de la población al ruido viario

6.2.2.2. Ruido industrial

Además del ruido debido al tráfico viario, se deduce de los resultados obtenidos del MER que las actividades industriales apenas suponen una exposición reseñable en la población.

NIVEL DE RUIDO	CENTENAS DE HABITANTES DE VIGO EXPUESTOS A RUIDO INDUSTRIAL					
(dBA)	DÍA	TARDE	NOCHE	24 HORAS		
< 50	2.835	2.830	2.832	2.744		
50 – 55	42	42	38	74		
55 - 60	30	33	32	43		
60 – 65	3	6	8	35		
65 - 70	0	0	0	15		
70 – 75	0	0	0	0		
> 75	0	0	0	0		

Tabla 16. Habitantes de Vigo expuestos (expresados en centenas), debido al ruido industrial

El ruido que generan las actividades industriales contempladas en el MER implica que menos del 3,2% de la población se ve expuesta a niveles de ruido $L_d \ge 55$ dBA, $L_e \ge 55$ dBA, $L_n \ge 50$ dBA o $L_{den} \ge 55$ dBA, porcentajes muy inferiores a los debidos al tráfico viario, indicados en el apartado 6.2.2.1.

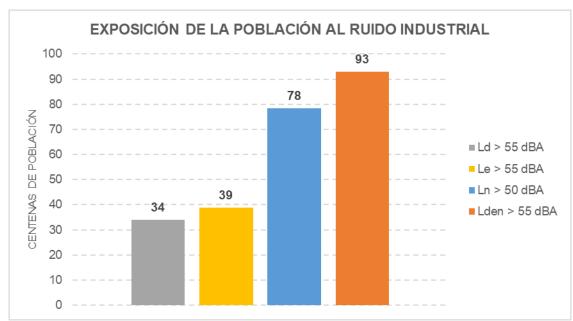


Tabla 17. Exposición a ruido industrial en centenas de población

PERIODO	CRITERIO DE ANÁLISIS	CENTENAS DE POBLACIÓN	PORCENTAJE DE POBLACIÓN
DÍA	L _d ≥ 55 dBA	34	1,2%
TARDE	L _e ≥ 55 dBA	39	1,3%
NOCHE	L _n ≥ 50 dBA	78	2,7%
24 HORAS	L _{den} ≥ 55 dBA	93	3,2%

Tabla 18. Indicadores generales acerca de la exposición de la población al ruido industrial

6.2.2.3. Ruido ferroviario

El ruido que genera el tráfico ferroviario que circula dentro del término municipal de Vigo se puede considerar residual en términos de exposición al ruido de la población. Esto se debe, por un lado, a que la mayor parte de los trenes transcurren por vías subterráneas, en el caso de los que entran/salen en/de la estación central de Vigo-Urzáiz, mientras que, por otro lado, los trenes de mercancías u otros con destino/origen la estación Vigo-Guixar suponen un porcentaje muy bajo del total y sus vías transcurren próximas a la línea de costa.

NIVEL DE RUIDO	CENTENAS DE HABITANTES DE VIGO EXPUESTOS A RUIDO FERROVIARIO					
(dBA)	DÍA	TARDE	NOCHE	24 HORAS		
< 50	2.903	2.904	2.911	2.884		
50 – 55	8	7	0	25		
55 - 60	0	0	0	2		
60 – 65	0	0	0	0		
65 - 70	0	0	0	0		
70 – 75	0	0	0	0		
> 75	0	0	0	0		

Tabla 19. Habitantes de Vigo expuestos (expresados en centenas), debido al ruido industrial

En este sentido, tal y como se indica en la Tabla 20, apenas se contabilizan un par de centenas de población expuestas en fachada a niveles de ruido $L_{den} \ge 55$ dBA por el ruido del tráfico ferroviario, lo que supone un 0,1% de la población total de Vigo, siendo directamente despreciable el asociado al resto de índices de ruido.

PERIODO	CRITERIO DE ANÁLISIS	CENTENAS DE POBLACIÓN	PORCENTAJE DE POBLACIÓN
DÍA	L _d ≥ 55 dBA	0	0,0%
TARDE	$L_e \ge 55 \text{ dBA}$	0	0,0%
NOCHE	L _n ≥ 50 dBA	0	0,0%
24 HORAS	L _{den} ≥ 55 dBA	2	0,1%

Tabla 20. Indicadores generales acerca de la exposición de la población al ruido ferroviario

6.3. PROBLEMAS IDENTIFICADOS Y SITUACIONES A MEJORAR

De los resultados obtenidos en la 4ª Fase del MER se deducen una serie de factores y singularidades a tener en cuenta de cara a realizar un análisis acústico para plantear medidas de reducción de ruido en el PAR.

6.3.1. Fuente de ruido predominante

En primer lugar, se detecta que la principal fuente de ruido que determina la huella acústica de Vigo es la que conforma el tráfico viario que circula por los ejes del municipio, muy por encima del ruido que genera el tráfico ferroviario y/o las actividades industriales.

Según se deduce de los resultados mostrados en el apartado 6.2.2, tanto durante los periodos día y tarde, como durante el periodo global día-tarde-noche, apenas un 1% de la población se ve expuesta a niveles de ruido en fachada superiores a los 55 dBA por fuentes sonoras diferentes al tráfico viario, en particular, al tráfico ferroviario y/o actividades industriales. En periodo noche, la exposición de la población a niveles de ruido en fachada superiores a 50 dBA debidos a dichas fuentes aumenta hasta el 3,5%, si bien continúa resultando un porcentaje irrelevante en comparación con el debido al ruido viario.

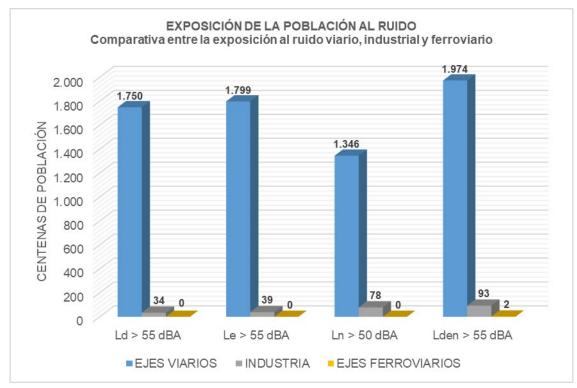


Tabla 21. Comparativa entre la población expuesta al ruido viario, industrial y ferroviario

Por este motivo, los principales escenarios problemáticos detectados giran en torno a las zonas donde confluyen elevadas intensidades diarias de tráfico y número de habitantes. Las medidas correctoras que se definan deben ir encaminadas, por tanto, a reducir no sólo la afección del tráfico viario sobre el terreno sino, principalmente, sobre los habitantes de las viviendas más expuestas.

Asimismo, según los resultados del MER, sólo el efecto de los grandes ejes viarios contribuye entre un 9,6% y un 12,7% a la exposición de población a niveles de ruido en fachada superiores a 50 dBA durante el periodo nocturno y a 55 dBA en el resto de los periodos.

FUENTES DE RUIDO	CENTENAS DE HABITANTES DE VIGO EXPUESTOS AL RUIDO TOTAL Y AL DEBIDO A GRANDES EJES VIARIOS				
	L _d ≥ 55 dBA	L _e ≥ 55 dBA	L _n ≥ 50 dBA	L _{den} ≥ 55 dBA	
TODAS LAS FUENTES	1.764	1.810	1.395	1.995	
SÓLO GRANDES EJES VIARIOS	182 (10,3%)	200 (11,1%)	134 (9,6%)	253 (12,7%)	

Tabla 22. Comparativa entre la población expuesta al ruido total y al debido sólo a los grandes ejes viarios

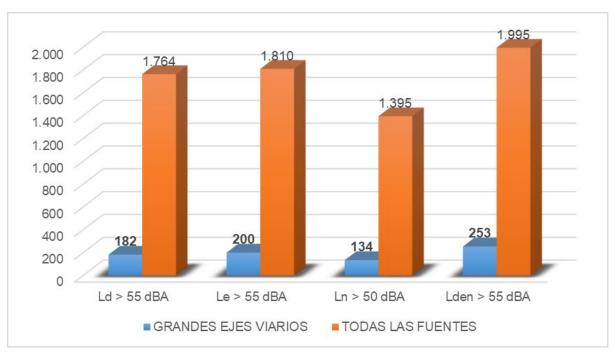


Tabla 23. Comparativa entre la población expuesta al ruido total y al debido sólo a los grandes ejes viarios

Entre las áreas más relevantes expuestas a elevados niveles de ruido destacan los entornos más próximos de las principales infraestructuras viarias que sirven de acceso al término municipal de Vigo, tanto de entrada a él como de salida del mismo. En general, estas zonas se consideran conflictivas porque en ellas convergen habitualmente unas elevadas intensidades de tráfico diario con altas densidades de población y, por lo general, durante recorridos de longitud considerable. Así, a modo de ejemplo, la AP-9V de acceso al municipio por su parte norte, por la que circulan diariamente más de 15.000 vehículos a velocidades máximas de entre 80 y 100 km/h y que conecta con la autopista AP-9, transcurre por la parroquia de Teis durante aproximadamente 5 km entre múltiples edificaciones de carácter mayoritariamente residencial. Por ello, la huella de ruido que genera el tráfico que circula por esta vía afecta en mayor o menor grado a cerca de 5.000 habitantes. En una situación similar están los ejes viarios indicados en la siguiente tabla.

EJE VIARIO	ADMINISTRACIÓN RESPONSABLE	LÍMITE VELOCIDAD	PARROQUIAS AFECTADAS
AP-9	Ministerio de Fomento	120 km/h	Teis, Lavadores, Candéan, Cabral, Bembrive
AP-9V	Ministerio de Fomento	80 – 100 km/h	Teis
VG-20 (P.P. Navia)	Ministerio de Fomento	70 - 120 km/h	Navia, Comesaña
AV. MADRID y A-55	Ministerio de Fomento	50 – 80 km/h	Centro, Lavadores, Sárdoma, Bembrive, Cabral
AG-57	Xunta de Galicia	120 km/h	Beade, Bembrive, Valladares, Zamáns

Tabla 24. Principales ejes viarios con alta densidad de tráfico y relevante exposición al ruido de la población

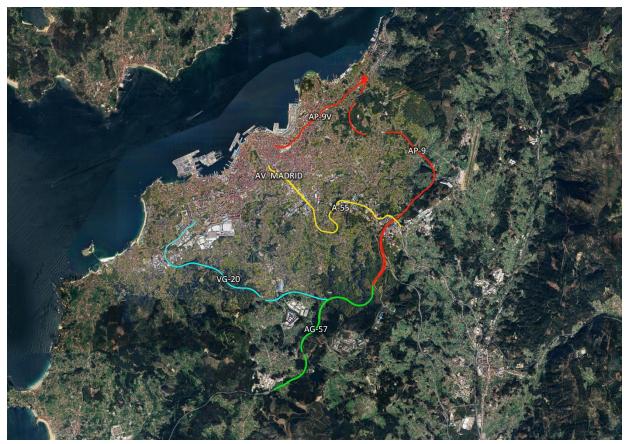


Figura 6. Principales ejes viarios de entrada/salida del municipio de Vigo

Un análisis específico de la exposición acústica sobre la población de cada uno de los ejes viarios indicados en la tabla anterior concluye que de todas las personas que residen en el entorno de dichos ejes y que se encuentran, por tanto, afectadas de algún modo por su huella de ruido, más de 25.000 se ven expuestas a niveles globales de ruido en fachada L_{den} superiores a 55 dBA, y más de 13.000 lo hacen a niveles de ruido nocturno en fachada L_n superiores a 50 dBA.

EJE VIARIO	ESTIMACIÓN DE POBLACIÓN EXPUESTA (Centenas)					
EJE VIARIO	L _d ≥ 55 dBA	L _e ≥ 55 dBA	L _n ≥ 50 dBA	L _{den} ≥ 55 dBA		
AP-9	18	21	15	29		
AP-9V	57	61	26	79		
VG-20 (P.P. Navia)	68	76	70	92		
A-55	39	40	22	51		
AG-57	1	1	1	2		

Tabla 25. Estimación de la población expuesta en 2021 al ruido de los principales ejes viarios

6.3.2. Áreas de mayor densidad poblacional

Dentro del término municipal de Vigo, la parroquia con mayor densidad poblacional es la parroquia Centro, englobando un 57,8% del total censado en el municipio. Esta parroquia es, además, la que alberga el mayor número de viales de la ciudad, contando con aproximadamente un 60% del total e incluyendo parcialmente grandes ejes viarios como la AP-9V o la A-55, por lo que resulta en la parroquia con mayor concentración de exposición dentro del término municipal, con más de 134.000 personas expuestas a niveles globales de ruido en fachada L_{den} superiores a 55 dBA, y cerca de 96.000 por niveles nocturnos de ruido en fachada L_n superiores a 50 dBA.

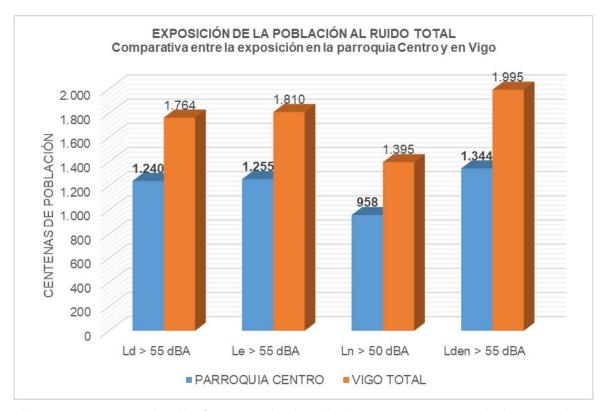


Tabla 26. Comparativa entre la población expuesta al ruido total en la parroquia Centro y en todo el municipio de Vigo

La parroquia Centro, junto a su contigua Teis, acumulan un 66,2% de la población total del municipio, llegando a cerca de 135.000 personas expuestas a niveles globales de ruido en fachada L_{den} superiores a 55 dBA, y unas 96.000 a niveles de ruido nocturno en fachada L_n superiores a 50 dBA. Estos datos suponen entre el 75% y el 79% de la exposición total dentro del municipio.

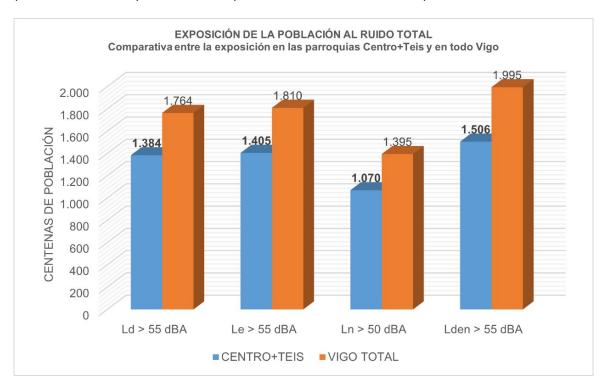


Tabla 27. Población expuesta al ruido total en las parroquias de Centro y Teis, y comparativa con la expuesta en todo el municipio de Vigo

6.3.3. Zonas de conflicto y áreas prioritarias de actuación

En base a los resultados analizados se concluye que, a pesar de que los grandes ejes viarios del municipio provoquen elevados niveles de exposición relativos (entre el 9% y 13% del total), la mayor concentración de exposición viene dada por los viales de media y gran capacidad dentro de las principales parroquias del término municipal, como son la Avenida da Gran Vía, Avenida de Castrelos, Avenida de Madrid, Travesía de Vigo o la Avenida Arquitecto Palacios, en las zonas de mayor densidad poblacional.

Figura 7. Niveles de ruido nocturno, Ln (dBA), debidos a la Avenida Arquitecto Palacios

Figura 8. Niveles de ruido global, Lden (dBA), debidos a la Avenida Arquitecto Palacios

En este tipo de viales, la actuación mediante pantallas acústicas resulta compleja, ya que las alturas de los apantallamientos alcanzarían decenas de metros, por lo que las actuaciones más viables y de

relativamente rápida implementación son las enfocadas en la reducción de velocidad y/o en la mejora de los asfaltados, favoreciendo aquellos de baja emisión acústica.

A pesar de lo mencionado anteriormente, los grandes ejes viarios siguen siendo unos de los principales focos de actuación a la hora de reducir la exposición de habitantes a niveles de ruido elevados, destacando, por ejemplo, la autovía VG-20 en las inmediaciones del Plan Parcial de Navia, o la autopista AP-9V en su trayectoria a lo largo de las parroquias Centro y Teis.

Figura 9. Niveles de ruido nocturno, Ln (dBA), debido a la VG-20 en el entorno de la zona residencial de Navia

Figura 10. Niveles de ruido global, Lden (dBA), debido a la VG-20 en el entorno de la zona residencial de Navia

6.3.4. Zonas de ocio

Otro de los principales objetivos a medio y largo plazo del Concello de Vigo es el del control del ruido derivado del ocio nocturno de la ciudad, a pesar de que la Directiva 2002/49/CE no lo contempla como foco de ruido específico y susceptible de análisis. No obstante, dado que se trata de un tipo de actividad que tiene su mayor auge por la noche, durante el principal periodo de descanso de los vecinos, conviene tenerlo en consideración de cara a su análisis y a la adopción de las medidas correctoras oportunas que permitan mantener una justa convivencia entre la vida nocturna de la ciudad y el confort acústico de sus habitantes.

En Vigo son cinco las zonas principales en las que se concentra el ocio nocturno del municipio:

- Casco Viejo o Barrio Histórico, en la parroquia del Centro, desde la Plaza de la Constitución hasta la Calle Teófilo Llorente, pasando por la Plaza de la Piedra o la Calle Real, y que ofrece una amplia variedad de locales y terrazas de vinos y tapas, con afluencia a primera hora de la noche.
- 2. Churruca, también en la parroquia del Centro, en el entorno de las calles Churruca y Rogelio Abalde. Al otro lado de la Calle Cervantes, la zona atraviesa las calles Martín Códax e Irmandiños, llegando hasta la Calle de Alfonso XIII. En toda esta zona abundan los pubs, las cafeterías y los bares de tapas.
- 3. El Arenal, en la parroquia del Centro, entre las Calle del Arenal y la Avenida García Barbón, con numerosos restaurantes, pubs y salas de fiesta.
- 4. El Ensanche de Vigo, también en la parroquia del Centro, entre la Alameda y la Calle Montero Ríos, con parques y zonas de paseo, así como restaurantes, bares y terrazas con gran afluencia de gente a última hora de la tarde y primera de la noche.
- 5. Por último, la zona entre la Avenida de Beiramar y Samil, desde la parroquia de Bouzas hasta Navia, con locales y terrazas a pie de playa.

Figura 11. Principales zonas de ocio nocturno en Vigo

7. ZONAS TRANQUILAS

El Concello de Vigo, a través de sus oficinas de Medio Ambiente y Urbanismo, han realizado un estudio de diferentes áreas dentro del término municipal, susceptibles de ser consideradas Zonas Tranquilas. En el apartado 11 del presente documento se describe el proceso de selección de áreas, de análisis y de designación final de éstas.

En la siguiente tabla se muestra un resumen con las doce Zonas Tranquilas definidas actualmente dentro de la aglomeración de Vigo, para cuya caracterización en cuanto a su ubicación (UBIC.) se ha tomado como referencia la tipología definida en la Ley 37/2003, de 17 de noviembre, del Ruido, en lo referente a zonificación acústica, esto es:

- **q**: Zonas tranquilas en las aglomeraciones (*quietAreaInAgglomeration*).
- r: Zonas tranquilas en campo abierto (quietAreaInOpenCountry).

IDENTIFICADOR	NOMBRE	TIPO	UBIC.	USO	FUENTES DE RUIDO
QA_ES_36057_01	Islas Cíes	Espacio natural	r	Recreativo, acceso limitado	Sonidos de origen natural.
QA_ES_36057_02	Xunqueira do Lagares	Espacio natural	q	Laguna, salinas, marismas	Sonidos de origen natural, tráfico viario y depuradora.
QA_ES_36057_03	Praia do Vao	Espacio natural	r	Recreativo	Sonido del mar, enmascarando el del tráfico viario.
QA_ES_36057_04	O Castro	Parque urbano	q	Recreativo	Sonidos de origen natural y tráfico viario circundante.
QA_ES_36057_05	A Guía	Parque urbano	q	Recreativo	Sonidos de origen natural, barcos pesqueros lejanos y tráfico viario residual.
QA_ES_36057_06	Parques de Coruxo, Saiáns y S.M. de Oia	Parque forestal	r	Recreativo	Sonidos de origen natural.
QA_ES_36057_07	Parque de Beade	Parque forestal	r	Recreativo	Sonidos de origen natural, actividades próximas, y tráfico viario.
QA_ES_36057_08	Monte Alba y Mirador do Cepudo	Parque forestal	r	Recreativo	Sonidos de origen natural.
QA_ES_36057_09	Parque de Zamáns	Parque forestal	r	Recreativo	Sonidos de origen natural.
QA_ES_36057_10	O Vixiador	Parque forestal	r	Recreativo	Sonidos de origen natural y tráfico viario y aeroportuario.
QA_ES_36057_11	A Madroa	Parque forestal	r	Recreativo	Sonidos de origen natural, actividades deportivas próximas y tráfico viario.
QA_ES_36057_12	Os Pozos	Parque forestal	r	Recreativo	Sonidos de origen natural y tráfico viario lejano.

Tabla 28. Características principales de las Zonas Tranquilas consideradas en este PAR

La declaración de una zona como tranquila no supondrá en ningún caso la imposición de límites de ruido distintos a los recogidos por la ley actual. Esta declaración supone el reconocimiento de una calidad acústica excelente, a preservar, evitando acciones que puedan degradarla.

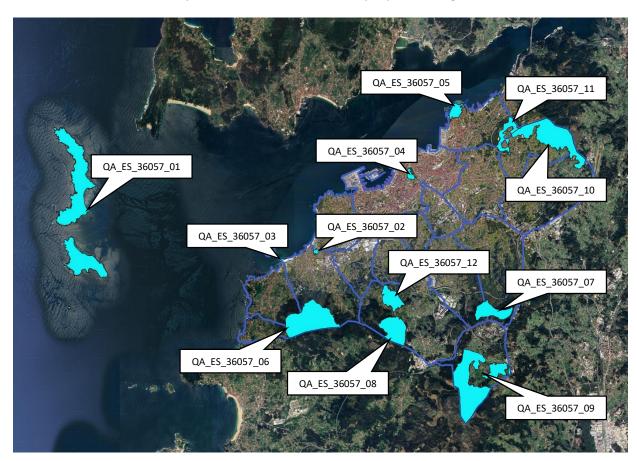


Figura 12. Ubicación de las Zonas Tranquilas consideradas en este PAR

8. PROGRAMAS EN ACCIÓN Y PREVISTOS

8.1. PROGRAMAS EJECUTADOS Y EN PROCESO

Desde la realización de la primera fase del M.E.R. y su correspondiente P.A.R., el Concello de Vigo ha venido desarrollando una política de diseño de proyectos singulares y ejecución de acciones específicas para la mejora de la habitabilidad y la convivencia de sus residentes en todo el término municipal.

8.1.1. Zonas Acústicamente Saturada (ZAS)

Desde el año 2008, Vigo recoge oficialmente en la normativa municipal la definición de Zonas Acústicamente Saturadas (ZAS), entendiendo por tales a aquellas zonas del municipio en las que se producen unos niveles sonoros elevados debido a la existencia de numerosas actividades de ocio o establecimientos públicos, a la actividad de personas que los utilizan, al ruido del tráfico en dichas zonas, así como cualquier otra actividad que incida en la saturación del nivel sonoro de la zona. En la actualidad, son más de una treintena las calles catalogadas como ZAS, perteneciendo todas ellas a la parroquia del Centro de Vigo según lo mostrado a continuación, tanto en la Tabla 29 que identifica las diferentes calles, como en la Figura 13, donde se muestra el área que abarcan.

ID.	DENOMINACIÓN	DECLARACIÓN DE Z.A.S.	
1	Rúa de Alfonso XIII	En su totalidad	
2	Travesía de Alfonso XIII	En su totalidad	
3	Rúa Areal	En su totalidad	
4	Rúa Canceleiro	En su totalidad	
5	Rúa Castelar	En su totalidad	
6	Rúa Cervantes	En su totalidad	
7	Rúa Churruca	En su totalidad	
8	Rúa Colón	En su totalidad	
9	Praza de Compostela	En su totalidad	
10	Rúa Concepción Arenal	En su totalidad	
11	Rúa García Olloqui	En su totalidad	
12	Rúa Gravina	En su totalidad	
13	Rúa E. Heraclio Botana	En su totalidad	
14	Ría Iglesias Esponda	En su totalidad	
15	Rúa Inés Pérez de Ceta	En su totalidad	
16	Rúa Irmandiños	En su totalidad	
17	Rúa Isabel II	En su totalidad	
18	Rúa Lepanto	En su totalidad	
19	Rúa Luís Taboada	En su totalidad	
20	Rúa Martín Códax	En su totalidad	
21	Rúa Montero Ríos	En su totalidad	
22	Rúa Oporto	En su totalidad	
23	Rúa Pablo Morillo	En su totalidad	
24	Rúa Pontevedra	En su totalidad	
25	Rúa República Arxentina	En su totalidad	
26	Rúa Rogelio Abalde	En su totalidad	
27	Rúa Rosalía de Castro	En su totalidad	
28	Rúa Roupeiro	En su totalidad	
29	Travesía Santiago de Vigo	En su totalidad	
30	Rúa Serafín Avendaño	En su totalidad	
31	Rúa Uruguai	En su totalidad	
32	Avenida de García Barbón	Del nº impar 1 al 137	
32	Averliua de Garcia Barboli	Del nº par 2 al 102	
33	Rúa Isaac Peral	Del nº par 2 al 8	
34	Rúa Urzáiz	Del nº 1 al 49	

Tabla 29. Calles de Vigo declaradas ZAS

Figura 13. Delimitación de Zonas Acústicamente Saturadas (ZAS) de Vigo

Las Zonas Acústicamente Saturadas se rigen por una regulación específica y están sujetas a una serie de condiciones acústicas más exigentes, principalmente en lo relativo al desarrollo normal de las actividades de hostelería y ocio nocturno. Toda actividad emplazada en las ZAS que incumpla alguna de las exigencias acústicas descritas en la legislación vigente aplicable estará sometida a un procedimiento sancionador con tramitación preferente, debiendo adoptar con carácter prioritario las medidas correctoras oportunas para subsanar dicho incumplimiento.

8.1.2. Zonificación Acústica

El Concello de Vigo cuenta en su último Plan General de Ordenación Municipal (PGOM), aprobado en el BOPPO nº146 del 4 de agosto de 2025, con una Zonificación Acústica del municipio, con la que delimita las distintas áreas acústicas de Vigo en función del uso predominante del suelo en cada zona y de los objetivos de calidad acústica que en ella se apliquen. La finalidad de una caracterización acústica del suelo como la indicada es la de ofrecer a la Administración competente una herramienta útil de predicción, prevención, análisis y/o corrección de los diferentes escenarios acústicos que se producen o se puedan producir dentro del término municipal en un momento dado. El objetivo es el de controlar el impacto acústico sobre el suelo y los residentes, para garantizar una óptima calidad acústica en todo el territorio y mejorar las condiciones de habitabilidad en el mismo.

La definición de una Zonificación Acústica adecuada supondrá un instrumento que aportará, por tanto, la información necesaria para diseñar, desarrollar e implantar los procedimientos óptimos de evaluación y gestión del ruido dentro del término municipal de Vigo, contribuyendo a la toma de decisiones con las que garantizar el cumplimiento de los objetivos de calidad en las diferentes áreas acústicas delimitadas.

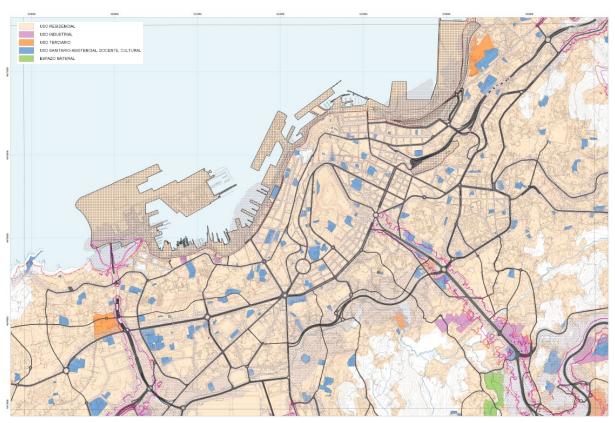


Figura 14. Sección de la Zonificación Acústica del término municipal de Vigo (fuente: PGOM)

8.1.3. Mejoras en infraestructuras y habitabilidad

Durante la última década, el Concello de Vigo ha ido diseñando y manteniendo una línea de definición y desarrollo de actuaciones destinadas a alcanzar una óptima habitabilidad y calidad de vida en todo el término municipal. Esto implica trabajar para que a los ciudadanos no les cueste trasladarse por la ciudad, para que tengan un mejor y más seguro acceso a servicios y a zonas de recreo, para que se les pueda garantizar su derecho a la privacidad, al silencio y al descanso, etc. Para conseguirlo, resultan fundamentales las políticas ambientales basadas en la gestión integral e inteligente de la ciudad, y enfocadas en la mejora de las condiciones de vida en el territorio. En particular, cobran especial relevancia las políticas referentes a la disminución de la contaminación acústica por medio del control y la reducción de superficie y población expuestas a niveles de ruido inapropiados, excesivos o incluso considerados perjudiciales para la salud.

Durante el periodo 2007-2012 el Concello de Vigo destinó cerca de 75 millones de euros en la ejecución de más de 80 actuaciones encaminadas a mejorar el entorno y las condiciones de vida de los residentes en los diferentes barrios del municipio. En línea con esta filosofía, en el periodo 2013-2024 el gobierno local ha continuado con el diseño y la ejecución de multitud de actuaciones, las cuales se pueden englobar principalmente en tres grandes grupos: 1) Humanizaciones de calles y barrios, y control del tráfico; 2) Asfaltado y mejoras de infraestructuras; y 3) Obras de accesibilidad y reparación de entornos.

HUMANIZACIONES

Una de las principales políticas de actuación del Concello de Vigo es la de la humanización del municipio, así como la de su cuidado y desarrollo sostenible, con el objetivo de mejorar la calidad de vida de sus ciudadanos. Las humanizaciones priorizan al viandante por delante del vehículo,

reduciendo carriles y ensanchando aceras allí donde es viable, o incluso peatonalizando tramos parciales o completos de calles. El resultado son barrios con predominio de peatones y con circulación limitada de vehículos, lo que conlleva una importante reducción en la huella acústica que genera el tráfico viario en el entorno.

Figura 15. Humanización Ronda de Don Bosco y Rúa de Eduardo Iglesias, con prioridad peatonal

CONTROL Y RESTRICCIONES DE TRÁFICO

Como ya se ha comentado, las humanizaciones suelen ir acompañadas de medidas complementarias destinadas al control del tráfico, tales como la limitación de velocidad por debajo de 50 km/h en zonas peatonales y calles de un solo carril, o la instalación de badenes en los pasos de peatones, para garantizar así la reducción de la velocidad de los vehículos en los entornos humanizados. En lo que al impacto acústico se refiere, reducir de 50 a 30 km/h la velocidad en una vía implica disminuir los niveles de ruido entre 2 y 3 dB en la zona afectada.

Figura 16. Limitación de velocidad a 20 km/h en Rúa María Berdiales

Otra de las medidas que ha favorecido la mejora del confort acústico de la población de Vigo es la restricción de circulación a los vehículos pesados en la Avenida de Sanjurjo Badía, en la parroquia de Teis. Se trata ésta de una vía de 1,3 km de longitud, de acceso a la ciudad por la cara norte del municipio. Hasta el año 2017, esta calle servía de comunicación a toda una red de transportistas entre los muelles y las industrias de Teis y Chapela y los del Centro de la ciudad, llegando a registrarse un porcentaje diario de vehículos pesados de hasta el 9%, una cifra considerable teniendo en cuenta el mayor impacto acústico que genera uno de estos vehículos en comparación con un turismo convencional.

Figura 17. Restricción de circulación al tráfico pesado en la Av. Sanjurjo Badía

ASFALTADO Y MEJORAS DE INFRAESTRUCTURAS

En los últimos cinco años se han venido ejecutando numerosas acciones encaminadas a cambiar o reparar el asfaltado de múltiples calles, vías urbanas, plazas, etc., así como a mejorar el estado de las infraestructuras allí donde los trazados no eran los más adecuados o las condiciones del entorno podían suponer un riesgo para conductores y viandantes.

Las tareas de asfaltado ejecutadas a lo largo de todo el término municipal han transcurrido, por norma general, de manera paralela a las acciones de humanización proyectadas en el propio entorno. Uno de los objetivos principales de la aplicación de nuevos asfaltos es la eliminación de los antiguos firmes para dar solución al exceso del ruido causado por la rodadura de vehículos sobre vías deterioradas por el tiempo, por pavimentos adoquinados o empedrados muy ruidosos, etc. Como muestra de ello, una de las principales zonas céntricas, de turismo y ocio de la ciudad, como es la Plaza de Compostela, ha sido objeto de una remodelación integral de la misma, restituyendo completamente el pavimento y mejorando además su entorno. Otro ejemplo es el de la calle Ronda de Don Bosco, una calle de uso casi exclusivamente residencial y de servicios, en la que se ha remodelado el pavimento de la calzada y las aceras, conjugando una zona de prioridad peatonal. En ambos casos, el acabado de la capa de rodadura en asfalto ha sido especialmente cuidado con la instalación de un aglomerado de grano grueso que amortigua el ruido de rodadura de los vehículos y además aporta a la calzada el aspecto de un paseo empedrado, en el tránsito entre las aceras y la plaza.

Figura 18. Nuevos asfaltados en Plaza de Compostela y Ronda de Don Bosco

Habitualmente, con las humanizaciones y los nuevos asfaltados se ejecutan también otras actuaciones encaminadas a mejorar la habitabilidad de los vecinos y la convivencia de estos con el tráfico rodado. Así, siguiendo el modelo de calles de un carril y/o una sola dirección, tienen lugar la reducción de carriles, y consecuentemente del tráfico y del ruido que genera éste, el ensanche de aceras, la optimización de espacios públicos para aparcamiento, la instalación badenes en pasos peatonales que obligan a los vehículos a reducir la velocidad, y la de vados de hormigón en curvas, plazas o zonas susceptibles de parada o estacionamiento irregular de vehículos, etc. Todas estas actuaciones van encaminadas a lograr una ciudad más amable para la vida diaria de sus habitantes, mejorando las infraestructuras, a la vez que se controla y se modera la circulación de vehículos y su velocidad máxima en cada tramo, de manera que cada pequeña actuación pueda suponer una reducción en lo relativo a los niveles de ruido generados por el tráfico viario.

Figura 19. Humanización, asfaltado y carril bici en Rúa Venezuela, en las proximidades de Gran Vía

ACCESIBILIDAD Y REPARACIÓN DE ENTORNOS

El último gran grupo de actuaciones abordadas por el Concello de Vigo es el de la reparación de entornos deteriorados y/o no sostenibles, y la mejora de la accesibilidad en todo el término municipal. Esta línea de trabajo sigue la marcada por el gobierno local para la supresión de barreras urbanísticas y arquitectónicas, así como para mejora de la comunicación entre los distintos puntos de la ciudad.

Actuaciones de este tipo van normalmente de la mano de las obras de humanización, asfaltado y reordenación de calles y barrios y, si bien no son medidas correctoras específicas en materia de contaminación acústica, sí influyen indirectamente en la mejora del confort acústico de su entorno. Como ya se ha comentado, uno de los objetivos principales de las obras de humanización es el de crear entornos en los que la prioridad principal sea el peatón, mejorando la accesibilidad para sus habitantes y principalmente para personas con alguna discapacidad. Entre las actuaciones más relevantes están los ensanches y rebajes de aceras, la colocación de botones podotáctiles en pasos de peatones, la puesta en marcha del proyecto "Vigo Vertical" que, entre otras cosas, apuesta por la instalación de ascensores y escaleras mecánicas entre zonas contiguas incomunicadas o con fuerte desnivel, etc. Estas acciones mejoran la interconexión entre calles y la movilidad de los viandantes, facilitándoles así la accesibilidad a zonas y a las redes de transporte, anteriormente inaccesibles o de acceso incómodo para el ciudadano. Una consecuencia directa de esto es el aumento de los desplazamientos a pie y/o en transporte público, y la reducción del uso del vehículo particular para la realización de trayectos urbanos, lo que trae consigo una disminución en la intensidad de tráfico y en los niveles de ruido derivados de ésta.

Otra de las grandes actuaciones en este apartado es la infraestructura existente y en curso para la circulación en bicicleta a través del municipio, contabilizando un total aproximado de 42 km circulables de carriles exclusivos para bicicletas y acondicionados para la convivencia entre bicicletas, peatones y vehículos a motor, entre los que destaca la conexión entre Teis y Samil, que permite cruzar el municipio a través de este medio de transporte.

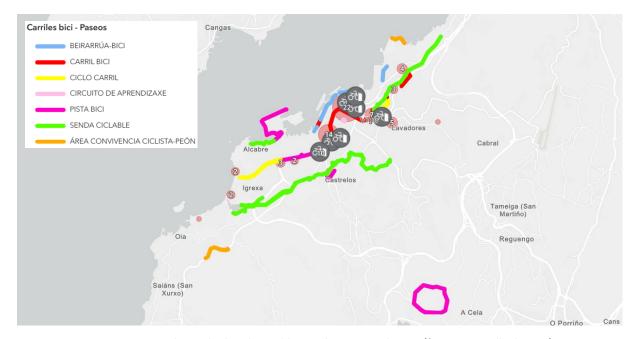


Figura 20. Mapa de carriles bici disponibles en el municipio de Vigo (fuente: Concello de Vigo)

Este proyecto no sólo aportará a los habitantes una nueva infraestructura que supone una vía de comunicación limpia en pleno centro del municipio, sino que además trae consigo la recuperación y rehabilitación de diferentes zonas de la ciudad que se encontraban deterioradas o en estado de abandono. El carril bici mejora a su vez la movilidad de los usuarios y fomenta el uso de la bicicleta por delante del vehículo particular, muy especialmente para el acceso a la zona de playas en la temporada estival.

8.1.4. Otras actuaciones

El Concello de Vigo, en su compromiso por fomentar la concienciación social referente a la exposición al ruido y por mejorar la calidad acústica del municipio, viene desarrollando otras líneas de actuación que complementan a las ya descritas, entre las que destacan las siguientes:

Formación e información

En línea con su política de concienciación ciudadana acerca de la relevancia que tiene la contaminación acústica en la sociedad actual, el Concello de Vigo mantiene abiertas las vías oficiales de información pública, en lo referente a los diferentes mapas de ruido y planes de acción del municipio. Así, en la web corporativa puede consultarse la documentación relativa a las diferentes fases elaboradas desde el año 2007, con todo tipo de información descriptiva, planos acústicos, datos estadísticos de afección, etc., así como un mapa 3D interactivo donde se muestran los niveles de ruido del MER de la 4ª Fase.

Otro de los objetivos del gobierno local es el de continuar con la formación en el campo de la acústica de los técnicos municipales, con la finalidad de estar al tanto de las últimas novedades que se produzcan en dicho sector y que puedan ser aplicables dentro del territorio vigués. Para ello, se contará con la colaboración de empresas de medioambiente, empresas de ingeniería acústica y, muy especialmente, con la propia Universidad de Vigo. Muestra de la política de formación que propone el Concello es el curso práctico que recibe periódicamente la Policía Local de Vigo para la correcta realización de mediciones de ruido interior. De este modo, los agentes municipales pueden atender con el máximo rigor técnico las demandas de los ciudadanos que soliciten sus servicios, principalmente en lo relativo a quejas de ruidos generados por actividades de ocio nocturno.

Renovación de sonómetros

La Policía Local ha añadido, a los equipos de medida con los que ya contaba, dos nuevos sonómetros clase 1 de la marca Brüel & Kjaer, modelo 2250 Light. Estos dispositivos permiten registrar los diferentes niveles de ruido en valores globales, en octavas y en tercios de octava, así como calcular de manera automática múltiples índices que aportarán información adicional de gran utilidad al resultado de la medición.

Estudios de impacto acústico

Todo nuevo proyecto urbanístico, industrial, etc., debe ir acompañado de un estudio preliminar del impacto acústico del mismo en su entorno de desarrollo. El objetivo es el de cumplir con las exigencias establecidas en la legislación acústica vigente, en particular la que hace referencia al cumplimiento de los objetivos de calidad acústica según la tipología de suelo predominante. En aquellos casos en los que se prevea un incumplimiento, el estudio debe ir acompañado de las medidas correctoras necesarias para controlar los niveles de ruido en el entorno y garantizar el confort acústico en él.

Expedientes sancionadores

El portal web del Concello de Vigo tiene activa una <u>sección</u> para la tramitación de denuncias por contaminación acústica dentro del término municipal.

8.1.5. Inversiones realizadas

A continuación, se muestra una tabla con casi una treintena de actuaciones de humanización, asfaltado y accesibilidad, ejecutadas en el periodo 2018-2024 o en curso, para las que se han destinado algo más de **35 millones de euros**.

ID.	ACTUACIÓN	PARROQUIA	IMPORTE PROYECTO (IVA INCLUIDO)
1	HUMANIZACIÓN AVDA CASTELAO, MARXE IMPAR, ENTRE ROTONDA BARCO E DARÍO DURÁN	CENTRO	1.173.440,49 €
2	HUMANIZACIÓN CALEXÓN BALADO, ROSALÍA DE CASTRO FRONTE N.º 41. AVV FONTE DO GALO	CENTRO	306.292,41 €
3	HUMANIZACION ENTORNO VAL MIÑOR, FRENTE GRADA MARCADOR E GRADA TRIBUNA	CENTRO	1.831.856,40 €
4	HUMANIZACIÓN LEPANTO	CENTRO	1.120.132,01 €
5	HUMANIZACIÓN TEIXUGUEIRAS FASE 1	CENTRO	2.679.325,54€
6	HUMANIZACIÓN ARAGÓN FASE 6	CENTRO	570.000,00€
7	HUMANIZACIÓN GARCÍA BARBÓN, ENTRE ROSALIA E ISAAC PERAL	CENTRO	2.197.043,98€
8	HUMANIZACIÓN GRAN VÍA, ENTRE VENEZUELA E NICARAGUA	CENTRO	4.234.891,89€
9	HUMANIZACIÓN HISPANIDADE, ENTRE ZAMORA Y COLMEIRO	CENTRO	707.556,71€
10	HUMANIZACIÓN MARTÍNEZ GARRIDO FASE 4	CENTRO	1.223.915,00€
11	HUMANIZACIÓN ROMIL	CENTRO	1.230.000,00€
12	HUMANIZACIÓN RONDA DE DON BOSCO	CENTRO	1.852.238,72€
13	HUMANIZACIÓN RÚA COLOMBIA FASE 2	CENTRO	749.293,61€
14	HUMANIZACIÓN RÚA GREGORIO ESPINO. FASE 4	CALVARIO	1.600.000,00€
15	HUMANIZACIÓN RÚA ROSAL	COIA	385.816,68€
16	HUMANIZACIÓN RÚA SERAFIN AVENDAÑO, ENTRE ARENAL E ROSALÍA	CENTRO	286.266,42€
17	HUMANIZACIÓN RÚA TABOADA LEAL, ENTRE RONDA DON BOSCO Y VENEZUELA	CENTRO	460.639,00 €
18	HUMANIZACIÓN RÚA TRONCOSO	CENTRO	362.458,03 €
19	HUMANIZACIÓN SEVERINO COBAS, DESDE BOUCIÑA №2 HASTA RAMÓN NIETO	LAVADORES	439.757,12€
20	HUMANIZACION VALLADOLID	CALVARIO	450.000,00€
	TOTAL	HUMANIZACIONES	23.860.924,01 €

Tabla 30. Principales actuaciones ejecutadas en Vigo en el periodo 2018-2024

ID.	ACTUACIÓN	PARROQUIA	IMPORTE PROYECTO (IVA INCLUIDO)				
VV1	VIGO VERTICAL, MELLORA ACCESIBILIDADE EN JUAN RAMÓN JIMENEZ, ENTRE MARQUÉS DE VALTERRA Y TORRECEDEIRA.	CENTRO	1.018.416,10€				
VV2	VIGO VERTICAL, MELLORA ACCESIBILIDADE ENTRE ROMIL FRENTE A FELICIANO ROLÁN E HISPANIDADE FRENTE A AMOR RUIBAL	CENTRO	1.271.209,69€				
VV3	VIGO VERTICAL: ACCESO MECÁNICO COLEGIO LOSADA A RAMÓN NIETO	LAVADORES	2.305.531,65€				
VV4	VIGO VERTICAL: ACCESO MECÁNICO RAMÓN NIETO A COLEXIO FONTEOSCURA E CENTRO SAUDE LAVADORES	LAVADORES	1.814.513,63€				
VV5	VIGO VERTICAL, ASCENSOR PRAZA ESTACIÓN A URZÁIZ	CENTRO	425.000,00€				
VV6	VIGO VERTICAL, CENTRO DE SAÚDE TEIS, ÁNGELA INGLESIAS REBOLLAR Y AV. GALICIA	TEIS	1.308.106,35 €				
VV7	VIGO VERTICAL, ESCALERA MECÁNICA RÚA TALUDE COLEXIO MARIANO	CENTRO	713.707,97 €				
	TOTAL VIGO VERTICAL 11.530.758,54 €						

Tabla 31. Actuaciones de Vigo Vertical ejecutadas en el periodo 2018-2024

8.2. ESTRATEGIA Y PROGRAMAS EN CURSO (CORTO PLAZO)

De cara a los próximos cinco años, la estrategia del Concello de Vigo pasa por continuar con el proceso de humanización del municipio, haciéndolo más sostenible, habitable y accesible a todos sus ciudadanos. Entre las actuaciones de mayor inversión a corto plazo destacan, de nuevo, las destinadas a humanizaciones, asfaltado y accesibilidad, las cuales, como ya se ha explicado, tienen una incidencia directa o indirecta en la huella acústica del ámbito en el que se desarrollan. En la siguiente tabla se muestra una relación de las actuaciones planificadas en este sentido, con inicio de ejecución previsto la mayor parte de ellas entre finales de 2024 y mediados de 2025 y para las que se proyecta destinar más de 26 millones de euros.

ID.	ACTUACIÓN	PARROQUIA	IMPORTE PROYECTO (IVA INCLUIDO)
1	HUMANIZACIÓN AVDA. DE MADRID	CENTRO	15.894.233,40 €
2	HUMANIZACIÓN LEPANTO	CENTRO	1.120.132,01 €
3	HUMANIZACIÓN PRAZA SAN MAURO, IGREXA DE MATAMÁ	MATAMÁ	622.837,84 €
4	HUMANIZACIÓN ROSALÍA DE CASTRO, ENTRE PONTEVEDRA E REPÚBLICA ARGENTINA, FASE 1		1.810.656,84€
5	HUMANIZACIÓN RÚA PAZO, PRAZA DA VILA E FERREIROS	BOUZAS	392.051,56 €
6	HUMANIZACIÓN SAN ROQUE, ENTRE GREGORIO ESPINO E RUISEÑOR	CALVARIO	1.968.973,44 €
7	HUMANIZACION SERAFÍN AVENDAÑO, ENTRE G BARBÓN E HALO	CENTRO	1.768.159,63 €
8	HUMANIZACIÓN AVDA. DE MADRID	CENTRO	15.894.233,40 €
	TOTAL HUMANIZACIONES A COR	TO Y MEDIO PLAZO	23.577.044,72 €

Tabla 32. Presupuesto para ejecutar las humanizaciones previstas en Vigo en el periodo 2024-2029

ID.	ACTUACIÓN	PARROQUIA	IMPORTE PROYECTO (IVA INCLUIDO)
VV1	VIGO VERTICAL,MELLORA ACCESIBILIDADE EN JUAN RAMÓN JIMENEZ, ENTRE MARQUÉS DE VALTERRA E TORRECEDEIRA.	CENTRO	1.018.416,10€
VV2	VIGO VERTICAL: HUMANIZACIÓN PINTOR LUGRIS	CENTRO	1.575.231,45 €
	TOTAL VIGO VERTICAL A COR	2.593.647,55 €	

Tabla 33. Actuaciones de Vigo Vertical previstas para el periodo 2024-2025

La rehabilitación de firmes es una de las continuas actuaciones que el Concello de Vigo aborda periódicamente, con la finalidad principal de mejorar la seguridad vial y la comodidad de los usuarios. Con esta medida, se consigue reducir los niveles sonoros del ruido de rodadura, tanto más cuántas más características acústicas tenga el asfalto, no sólo por la propia porosidad del mismo, en comparación con la del asfalto anterior. Para el año 2025 se tienen previsto reasfaltar más de una decena de calles, cubriendo casi 8 km de longitud en total, siendo sus características principales las mostradas en la siguiente tabla.

PARROQUIA	CALLE	LONGITUD	DESDE	HASTA
MATAMÁ	Rúa Babio	400 m	Av. Clara Campoamor	C/ Ramiro Pascual
MATAMÁ	Camiño Lagarella	300 m	C/ Abade Juan de Bastos, nº1	C/ Abade Juan de Bastos, nº56
BEADE	Estrada Venda	700 m	C/ Ramiro Pascual	Rotonda Hospital Álvaro Cunqueiro
VALLADARES	Estrada Gándara	450 m	Estrada Gándara, nº31	Estada Gándara, nº54
COMESAÑA	Rúa Muíños	450 m	Estrada Camposancos	Av. Ricardo Mella
CORUXO	Camiño San Lourenzo	400 m	Estrada Camposancos	Camiño San Lourenzo, nº48
SÁRDOMA	Monte da Serra	400 m	Baixada Laxes	Senda Monte da Serra, nº33
CABRAL	Rúa Manuel Álvarez	700 m	Av. Ramón Nieto	C/ Manuel Álvarez, nº56
CABRAL	Rúa Fontaíña	700 m	Av. Santa Mariña	Estrada do Tranvía

CABRAL	Rúa Riomao	150 m	C/Fontaíña	Estrada do Tranvía
CABRAL	Av. Santa Mariña	850 m	C/ Valoutas	C/ Mestre Alfredo González
LAVADORES	Rúa Subride	950 m	C/ Antonio Nieto Figueroa	Av. Aeropuerto
LAVADORES	Camiño Sampaio de Abaixo	500 m	Camiño Xanteria	Subride
CANDEÁN	Camiño Devesa	650 m	Subida Á Madroa	Travesía Devesa

Tabla 34. Reasfaltados previstos para el año 2025

Entre las actuaciones indicadas, destaca la **humanización de la Avenida de Madrid**, vía de acceso principal a Vigo desde/hacia el sureste. Los trabajos transcurrirán a lo largo de sus casi 2,5 km de longitud, y su ejecución tiene previsto iniciarse a comienzos de 2025 y prolongarse casi 3 años.

Figura 21. Estado actual de la Avenida de Madrid (arriba) e infografía publicada como ejemplo del resultado de las obras de humanización de la misma (abajo)

8.3. ESTRATEGIA A MEDIO Y LARGO PLAZO

Desde el Concello de Vigo se valoran y promueven además otras medidas para ir instaurando en un futuro, a medio y largo plazo, encaminadas también a reducir los niveles de ruido del municipio y mejorar el tráfico y la habitabilidad de los residentes. Entre ellas, caben destacar las siguientes:

- Continuar con la línea de análisis y evaluación del impacto acústico debido al tráfico de vehículos pesados, considerando la viabilidad de aplicar restricciones al mismo en zonas con alta densidad poblacional y en aquellas calles donde los vehículos de gran tonelaje supongan un porcentaje de circulación considerable, en relación al tráfico medio diario.
- Reducir la velocidad máxima permitida, pasando de 50 km/h a 30 km/h o incluso a 20 km/h en vías urbanas, principalmente en entornos residenciales de las parroquias centrales del municipio, con mayor concentración de residentes.
- Mejorar las semaforizaciones en puntos críticos de la ciudad, tal que permitan optimizar la fluidez del tráfico, reduciendo atascos y el número de operaciones de parada/arranque de vehículos, las cuales contribuyen a incrementar los niveles de ruido en el entorno de los semáforos.
- Continuar con la instalación de paneles informativos en diferentes puntos de la ciudad, con información en tiempo real de las vías más y menos fluidas, para que los conductores puedan elegir el trayecto más conveniente, favoreciendo la circulación, reduciendo la formación de atascos y disminuyendo así el aumento de niveles de contaminación y de ruido que se generan en ellos.
- Monitorizar el ruido en diferentes zonas del término municipal, con el objetivo principal de controlar y mejorar el confort acústico de la población.
- Apostar por la colaboración del Concello de Vigo con las administraciones responsables de aquellas fuentes de ruido de competencia supramunicipal (ejes viarios, actividad portuaria, etc.), para el análisis de puntos conflictivos dentro del territorio y la adopción de medidas correctoras (reducción de velocidad, restricciones de tráfico pesado, instalación de barreras acústicas, etc.) que contribuyan a reducir el impacto acústico en el entorno. Así, por ejemplo, en el caso del entorno de la AP-9V, reducir la velocidad máxima de 100 km/h a 50 km/h en su trayecto, cuya administración responsable es el Ministerio de Fomento, supondría disminuir entre un 60% y un 95% la población expuesta en la zona a niveles excesivos de ruido.
- Fomentar espacios comunes libres de tráfico, priorizando a los peatones sobre los vehículos, humanizando áreas densamente pobladas, generando entornos de esparcimiento seguros y confortables tanto acústicamente como en lo referente al acceso a ellos y a su habitabilidad.
- Analizar el efecto que tendrá en un futuro la entrada en circulación con carácter generalizado del coche eléctrico, sobre la huella de ruido del municipio.
- Promover el uso de la bicicleta, del patinete eléctrico, del segway, etc., por delante del vehículo privado, y su circulación responsable y controlada a través de los carriles bici habilitados y previstos en todo el término municipal.
- Apostar por las campañas de información y sensibilización de la población acerca de la problemática del ruido y de sus efectos nocivos sobre la salud, de los beneficios de caminar

hacia una ciudad acústicamente confortable, así como del relevante papel que juega el ciudadano y de la importancia del respeto al medio ambiente y al descanso ajeno.

El Concello de Vigo continuará, de este modo, con una política de mejora de la calidad de vida dentro de su territorio, donde la reducción de los niveles de ruido del municipio y la búsqueda del confort acústico y del derecho al descanso de sus habitantes cobran una especial relevancia. A lo largo de los próximos años el gobierno local prevé ir alcanzando los objetivos planteados, consiguiendo una disminución apreciable en términos de contaminación acústica y concienciando e informando adecuadamente de ello a sus ciudadanos.

8.4. MEDIDAS PREVISTAS PARA EL PLAN DE ACCIÓN CONTRA EL RUIDO

Siguiendo la línea de estrategias a corto, medio y largo plazo, y teniendo en cuenta los conflictos analizados en el apartado 6.3 de los resultados del M.E.R. 4ªFase, se recogen a continuación las medidas de reducción de ruido previstas en el Plan de Acción contra el Ruido. Estas medidas se centran, casi exclusivamente, en la actuación sobre los principales ejes viarios de la ciudad (viales de media y gran capacidad del municipio) y sobre los grandes ejes viarios de acceso al municipio.

Una de las medidas más habituales para reducir el impacto acústico de los ejes viarios es la reducción de la velocidad en aquellos tramos donde sea viable hacerlo. Allí donde no lo sea o donde el grado de afección sea tal que se requieran medidas correctoras adicionales, se debe optar por la instalación de pantallas acústicas en las proximidades del eje viario, con una altura tal que se garantice la protección del entorno y principalmente de los edificios residenciales más afectados. En caso de que la instalación de pantallas acústicas no resulte viable o efectivo, se optará por la mejora del pavimento con asfaltado poroso acústico (CNOSSOS-EU "NL 03" — Asfalto poroso de doble capa con capa superior fina).

8.4.1. Medidas de reducción de velocidad

Tal como se indica en el apartado 6.3.3, la principal exposición al ruido de la población de Vigo viene dada por los ejes viarios de media y gran capacidad dentro del municipio, especialmente sobre las zonas con mayor densidad poblacional en la parroquia Centro y sus inmediaciones. Algunos ejemplos de estos ejes viarios son la Avenida da Gran Vía, Avenida de Castrelos, Avenida de Castelao, Travesía de Vigo o la Avenida Arquitecto Palacios. Asimismo, algunos de los grandes ejes viarios contemplados en el M.E.R. son responsables de elevadas exposiciones al ruido a su paso por zonas urbanizadas, como es el caso de la VG-20.

Para este tipo de viales, la instalación de pantallas acústicas es compleja, en especial cuando discurren por entornos ampliamente urbanizados donde, a priori, puede resultar poco viable, ya que implicaría alturas de pantalla de decenas de metros. Por ello, para estas calles se opta como principal medida la reducción de velocidad máxima de circulación, siempre que sea posible, además del cambio de asfaltado del pavimento por asfaltados acústicos que permitan reducir el ruido generado por los vehículos que las transitan.

Zonas de Bajas Emisiones

El Concello de Vigo cuenta con un proyecto para la delimitación de las Zonas de Bajas Emisiones (ZBE), con el controlar y reducir todos los aspectos en materia de contaminación asociados a la movilidad dentro del municipio. Las ZBE consisten en áreas determinadas en las que se limita de forma progresiva el acceso, circulación y estacionamiento a determinados vehículos a motor en

su interior, pudiendo tomar medidas adicionales como la reducción de velocidad.

En este sentido, el Concello de Vigo tiene delimitadas en primera instancia un total de <u>cuatro Zonas de</u> <u>Bajas Emisiones</u>, como son las siguientes: la **ZBE Centro**, la **ZBE Plaza Portugal**, la **ZBE Calvario** y la **ZBE Bouzas**. Como medida recogida en el presente Plan de Acción, se podría limitar la velocidad máxima de circulación a 20 km/h en todas las calles recogidas dentro de las ZBE.

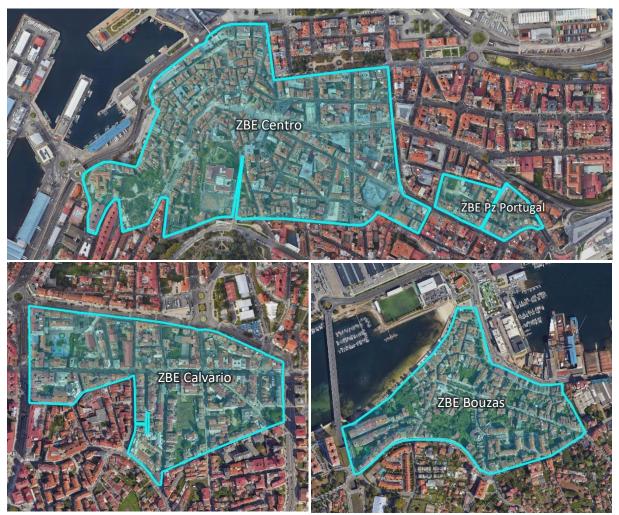


Figura 22. Zonas de Bajas Emisiones declaradas en el término municipal de Vigo

• Periferia de la Avenida da Gran Vía

La Avenida da Gran Vía supone uno de los principales ejes de conexión entre distintos puntos de la ciudad, soportando tráficos muy elevados que discurren a través de zonas de muy alta densidad poblacional. Una de las zonas residenciales más densas que atraviesa se encuentra entre la Plaza de España y Plaza América, contando con más de una treintena de edificios residenciales colectivos, incluyendo el centro hospitalario de Povisa, y que albergan en torno a 12.000 habitantes según los datos censales empleados para el M.E.R. de la 4ª Fase.

El acceso a estas edificaciones se realiza a través de las calles periféricas de la Avenida da Gran Vía y supone uno de los principales flujos de tráfico hacia/desde la misma, tales como la Avenida da Hispanidade, Rúa Barcelona o Rúa Zamora, entre otras. Actualmente la velocidad de estas calles se encuentra limitada a 30 km/h, por lo que la medida más efectiva consistiría en reducir la velocidad a

20 km/h, con lo que se conseguiría una atenuación teórica de entre 1 y 2 dB sobre las fachadas de las edificaciones más cercanas.

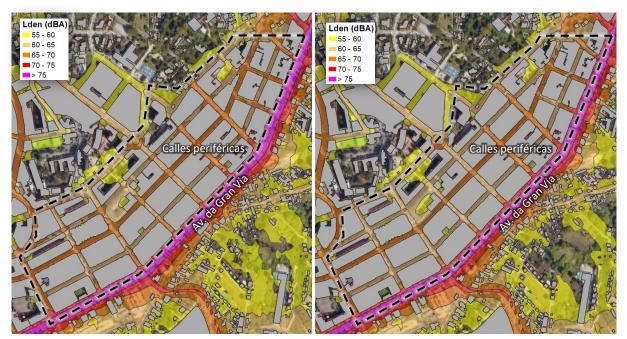


Figura 23. Niveles de ruido global, Lden (dBA), en el entorno de Gran Vía entre Plaza España y Plaza América, y sus calles periféricas. Izquierda, situación actual; derecha, tras el asfaltado acústico y la reducción de velocidad indicada

Figura 24. Niveles de ruido nocturno, Ln (dBA), en el entorno de Gran Vía entre Plaza España y Plaza América, y sus calles periféricas. Izquierda, situación actual; derecha, tras el asfaltado acústico y la reducción de velocidad indicada

La medida de reducción de velocidad a 20 km/h en los viales periféricos a la Avenida da Gran Vía afecta a las siguientes calles: Rúa Barcelona, Rúa Conde Gondomar, Rúa Illas Baleares, Rúa Illas Canarias, Rúa Nazario González, Rúa Pintor Colmeiro, Rúa Ramón Valle Inclán, Rúa Ramón y Cajal, Rúa Salamanca, Rúa San Amaro, Rúa Sevilla, Rúa Tarragona, Rúa Valencia, Rúa Zamora y Rúa Zaragoza.

VG-20

Otro caso de especial consideración es el relativo al tramo inicial de la VG-20, en el entorno del Plan Parcial de Navia, y en particular en los dos primeros kilómetros del eje viario, entre las parroquias de Comesaña y Navia. Se trata éste de un eje viario por el que circulan diariamente más de 21.000 vehículos, a una velocidad máxima permitida que va disminuyendo de 120 a 60 km/h en los dos viales de entrada a la ciudad, pero que en los dos viales de salida alcanza los 120 km/h desde prácticamente el comienzo del trazado.

En el tramo indicado se concentra una veintena de nuevos edificios residenciales, cuya distancia a la VG-20 apenas llega a los 20 metros en algunos casos. Según los datos censales empleados para la realización de la 4ª Fase del M.E.R., sólo en estos edificios habitan más de 7.000 personas.

La reducción de velocidad máxima a 50 km/h en todo el tramo indicado supondría una reducción de exposición acústica muy significativa, en especial sobre los edificios más expuestos, que pasarían de soportar en fachada niveles de ruido día-tarde-noche L_{den} de 70-75 dBA a 65-70 dBA, y niveles de ruido nocturno L_n de 65-70 dBA a 60-65 dBA. Una reducción de 5 dB implica que se reduciría en más de un 60% el número de habitantes expuestos a niveles de ruido globales en fachada $L_{den} \ge 65$ dBA y a niveles de ruido nocturno en fachada $L_n \ge 55$ dBA.

Las huellas de ruido del escenario actual y de otro hipotético con velocidades máximas de entrada y salida de 50 km/h se muestran en las siguientes figuras.

Figura 25. Niveles de ruido global, Lden (dBA), en el entorno de la VG-20, en sus dos primeros kilómetros. Izquierda, situación actual; derecha, tras la reducción de velocidad indicada

Figura 26. Niveles de ruido global, Ln (dBA), en el entorno de la VG-20, en sus dos primeros kilómetros. Izquierda, situación actual; derecha, tras la reducción de velocidad indicada

Para disminuir aún más el impacto acústico sobre el entorno y la población en esta parte de la VG-20, esta medida se podría complementar con otras, como puede ser la disposición de pantallas acústicas en el tramo considerado. No obstante, dada la cercanía de los edificios y la altura de los mismos, la instalación de pantallas en su formato tradicional puede no resultar totalmente efectiva ni viable (a priori, serían necesarias barreras verticales de decenas de metros), por lo que las propuestas de actuación deberían ir encaminadas en la instalación de dispositivos especiales para reducción de ruido, como el apantallamiento tipo túnel mostrado a continuación.

Figura 27. Ejemplo de apantallamiento tipo túnel para reducción de ruido

Avenida Arquitecto Palacios

Otras de las vías urbanas de competencia municipal más destacadas es la Avenida del Arquitecto Palacios, también conocida como Primer Cinturón de Vigo, entre las parroquias de Sárdoma y Freixeiro. Se trata de una vía urbana que comunica dos de las principales calles de la ciudad, como son la Avenida de Castrelos y la Avenida de Madrid, siendo esta última uno de los principales ejes de entrada y salida del término municipal.

El tráfico que discurre por este Primer Cinturón es de unos 40.000 vehículos diarios, que circulan a una velocidad máxima de 70 km/h. Si bien a ambos lados de su trazado y a lo largo de su recorrido

predominan las viviendas unifamiliares, existen también una serie de edificios residenciales colectivos de múltiples alturas que se localizan a menos de 20 metros del eje viario y donde sólo en ellos residen cerca de 1.000 personas.

Figura 28. Trazado de la Av. Arquitecto Palacios y ubicación de los edificios residenciales colectivos más expuestos

Una reducción de la velocidad máxima de los 70 km/h actuales a los 50 km/h en este tramo, que comprende cerca de 1,5 kilómetros, entre el cruce con la Avenida de Castrelos y las torres del Centro Comercial Gran Vía, supone una reducción de en torno a 3 dB en la huella de ruido ocasionada por la carretera, tal como se observa en la siguiente figura para el periodo nocturno.

Figura 29. Niveles de ruido nocturno, Ln (dBA), en el entorno de la Avenida de Arquitecto Palacios. Izquierda, situación actual; derecha, tras la reducción de velocidad indicada

A pesar de no estar cuantificado en el presente Plan de Acción contra el Ruido, la combinación de esta medida con otras actuaciones, como la instalación de nuevas barreras acústicas y renovación de las ya existentes, conseguiría reducir aún más la afección sonora de una de las zonas más conflictivas del municipio, en términos de contaminación acústica.

8.4.2. Medidas de asfaltado acústico

Tal como se ha mencionado anteriormente, los ejes de gran capacidad de la ciudad, como la Avenida da Gran Vía, Avenida de Castrelos, Avenida de Castelao o Travesía de Vigo, suponen uno de los principales focos de exposición al ruido de la población de Vigo.

Para este tipo de viales, la reducción de velocidad resulta controvertida, ya que actualmente la velocidad máxima permitida se encuentra ya ajustada y relativamente baja para la capacidad que tienen estas carreteras. Además, en estos casos de carreteras que discurren por zonas con muy alta densidad poblacional, la instalación de pantallas acústicas no resulta la mejor opción, ya que por lo general se encuentran a escasos metros de las edificaciones.

Por ello, para una reducción efectiva de la exposición al ruido sobre las edificaciones más cercanas a estos viales, la opción más viable consiste en sustituir el asfalto actual por asfaltos porosos acústicos que permitan reducir el nivel de ruido generado por los vehículos que las transitan.

En las siguientes figuras se muestran casos de ejemplo de la reducción de ruido en la huella tras la aplicación de un asfaltado acústico (CNOSSOS-EU "NL 03" – Asfalto poroso de doble capa con capa superior fina), que consigue reducir de manera efectiva el nivel de ruido en unos 5 dB.

Figura 30. Niveles de ruido nocturno, Ln (dBA), en el entorno de Gran Vía, entre Urzáiz y Plaza España. Izquierda, situación actual; derecha, tras el asfaltado acústico indicado

Figura 31. Niveles de ruido nocturno, Ln (dBA), en el entorno de Gran Vía, entre Plaza España y Plaza América, y sus calles periféricas. Izquierda, situación actual; derecha, tras el asfaltado acústico indicado

Figura 32. Niveles de ruido nocturno, Ln (dBA), en el entorno de la Avenida de Castelao, Castrelos, Florida y Alcalde Portanet. Izquierda, situación actual; derecha, tras el asfaltado acústico indicado

Figura 33. Niveles de ruido nocturno, Ln (dBA), en el entorno de la Avenida A. Gregorio Espino, E. Martínez Garrido, Jenaro de la Fuente y Travesía de Vigo. Izquierda, situación actual; derecha, tras el asfaltado acústico indicado

La medida de asfaltado acústico propuesta en este Plan de Acción contra el Ruido se aplica a los siguientes viales: Av. das Camelias, Av. da Florida, Av. da Gran Vía, Av. de Castelao, Av. de Castrelos, Av. de Emilio Martínez Garrido, Av. do Alcalde Portanet, Av. do Alcalde Gregorio Espino, rúa Areal (entre García Barbón y rotonda da Paellera), Jenaro de la Fuente, Pi y Margall, Plaza América, Plaza España, Travesía de Vigo (entre Jenaro de la Fuente y cruce con Aragón), Urzáiz-Colón (entre Policarpo Sanz y Av. da Gran Vía) y Venezuela.

8.4.3. Otros entornos y medidas

Existen otros entornos en los que, a pesar de no tener grandes afecciones debidas a ejes de media/gran capacidad, se llevan a cabo medidas que suponen un beneficio notable para los habitantes del municipio.

Peatonalización de Paseo de Alfonso XII, Elduayen y Porta do Sol

En los últimos años, el Concello de Vigo aprobó la construcción de un túnel que conecta de forma subterránea el final de la calle Policarpo Sanz con la calle Pi y Margall, peatonalizando las calles Paseo de Alfonso XII, Elduayen y Porta do Sol.

Este túnel, actualmente en construcción, eliminará de forma total el tráfico viario que circula por estas calles y, por tanto, la exposición al ruido en el entorno de estos viales que se producía sobre los edificios residenciales más próximos, tal como se observa en las siguientes figuras. Se estima que unas 1.600 personas se pueden ver beneficiadas por esta medida, según los datos censales empleados en el M.E.R. de la 4ª Fase.

Figura 34. Niveles de ruido global, Lden (dBA), en el entorno de Paseo de Alfonso, Elduayen y Porta do Sol. Izquierda, situación actual; derecha, tras la peatonalización indicada

Figura 35. Niveles de ruido nocturno, Ln (dBA), en el entorno de Paseo de Alfonso, Elduayen y Porta do Sol. Izquierda, situación actual; derecha, tras la peatonalización indicada

Vigo Vertical

Desde el año 2015, el Concello de Vigo lleva promoviendo y avanzando en el proyecto Vigo Vertical, un plan de desarrollo urbano para mejorar la movilidad sostenible dentro de la ciudad.

En este sentido, se ha apostado por la instalación de escaleras mecánicas, rampas mecánicas y hasta ascensores, con el objeto de salvar la compleja orografía de la ciudad, facilitando la movilidad peatonal

entre distintas calles de la ciudad. En los últimos años destaca, en otras, la instalación del ascensor HALO en el entorno de la estación de Vigo-Urzáiz, que permite la movilidad entre el entorno de Vía Norte y García Barbón, dos calles separadas por la autopista AP-9V. Otra de las obras con mayor impacto ha sido la instalación de rampas mecánicas en la Avenida da Gran Vía, que han favorecido la movilidad peatonal a través de dicha calle.

Figura 36. Vista de alguna de las obras llevadas a cabo dentro del proyecto Vigo Vertical. A la izquierda, el ascensor HALO; a la derecha, rampas mecánicas de la Avenida da Gran Vía

Todas estas medidas promueven la movilidad peatonal frente al uso del vehículo privado, reduciendo, en mayor o menor medida, el número de desplazamientos diarios de vehículos y, consecuentemente, el nivel de ruido que estos provocan sobre las fachadas de las edificaciones más próximas. No obstante, esta reducción no se refleja en este Plan de Acción, ya que sólo podrán verse cuantificadas mediante nuevos aforamientos de vehículos, empleados en futuras fases del Mapa Estratégico de Ruidos.

Ocio nocturno

El ocio nocturno constituye habitualmente una de las principales fuentes de quejas vecinales, en términos de contaminación acústica y molestias por ruido. Sin embargo, las actividades de ocio no se contemplan propiamente como focos de ruido en la Directiva 2002/49/CE, al no poder establecer para ellas un patrón de emisión sonora y un modelo de cálculo estandarizados y, por tanto, no se han tenido en consideración para la realización de la 4ª Fase del M.E.R. No obstante, la realidad determina que estas actividades condicionan los niveles de ruido, principalmente durante el periodo nocturno, del entorno en el que se ubican, dificultando en ciertos casos la convivencia y el descanso de los vecinos.

En Vigo, la distribución de locales de hostelería y ocio nocturno se reparte básicamente en las parroquias del núcleo del municipio, estando la mayor concentración de ellos en la parroquia del Centro. En particular, en ésta el Concello tiene desde el año 2008 una serie de calles clasificadas como Zonas Acústicamente Saturadas (Z.A.S.), de modo que las actividades emplazadas en esta área están expuestas a un control específico en materia de contaminación acústica (restricciones horarias, limitación del uso de terrazas, incremento del control policial, tramitación preferente de procedimientos sancionadores, etc.).

Figura 37. Concentración de locales de ocio y hostelería en el Centro de Vigo

Desde el Concello de Vigo se considera fundamental el control del ruido que generan las actividades de ocio, dado que sus molestias se producen principalmente en fin de semana y en horario nocturno, periodos destinados en su mayor parte al descanso vecinal. En este sentido, el objetivo de la Administración local es el de conseguir una adecuada convivencia entre empresarios y residentes, tal que los primeros puedan mantener su modelo de negocio, generar actividad económica y puestos de trabajo en la zona, aportando valor turístico y de ocio a la misma, sin que los vecinos vean afectados negativamente tanto su derecho al descanso nocturno como, en consecuencia, su calidad de vida.

• Puerto de Vigo

Por otro lado, conviene hacer mención al ruido derivado de las actividades que se desarrollan en el Puerto de Vigo, el cual se extiende a lo largo de los municipios de Vigo y Redondela, en el margen sur de la Ría de Vigo, y de Vilaboa, Moaña y Cangas, en el margen norte de la misma.

Figura 38. En rojo, extensión del Puerto de Vigo

Dentro del término municipal de Vigo se encuentran la mayor parte de las infraestructuras y las instalaciones portuarias para pesca y para el transporte de mercancías y pasajeros. La concentración de astilleros, muelles y, en general, de empresas asociadas al sector naval y pesquero, se reduce principalmente a las parroquias de Bouzas, Coia, Centro y Teis, y sus sedes se distribuyen a lo largo de aproximadamente 9 km de costa.

Figura 39. Área de ocupación aproximada del Puerto, dentro del término municipal de Vigo

La Autoridad Portuaria de Vigo es la autoridad competente para realizar el Mapa Estratégico de Ruidos y el Plan de Acción contra el Ruido referente a la infraestructura portuaria, conforme a los artículos 4 y 12 de la Ley 37/2003 de 17 de noviembre, del Ruido, sin perjuicio de la colaboración y coordinación entre las diferentes administraciones públicas para garantizar su homogeneidad y coherencia con el M.E.R. y el P.A.R. de la aglomeración de Vigo, conforme al artículo 11 del Real Decreto 1513/2005 de 16 de diciembre, en el que se hace referencia a la colaboración en la elaboración de mapas estratégicos de ruido y planes de acción.

AP-9V

A pesar de no estar previsto en el actual PAR, cabe destacar que realizar medidas sobre la AP-9V puede suponer reducciones significativas en la exposición a la población. Por ejemplo, una reducción de la velocidad máxima de circulación a 50 km/h supondría que se redujese prácticamente en su totalidad la población expuesta únicamente por esta infraestructura a niveles de ruido en fachada $L_d \ge 65$ dBA, $L_e \ge 65$ dBA, $L_h \ge 55$ dBA y $L_{den} \ge 65$ dBA, así como una reducción de hasta 5.000 personas expuesta a niveles de ruido en fachada $L_d \ge 55$ dBA, $L_e \ge 55$ dBA, $L_h \ge 50$ dBA y $L_{den} \ge 55$ dBA, debidos a la infraestructura.

NIVEL DE RUIDO		ÓN DE CENTENAS STOS A RUIDO VI		
(dBA)	DÍA	TARDE	NOCHE	24 HORAS
< 50	61	66	20	71
50 – 55	-24	-25	-11	-19
55 - 60	-22	-25	-8	-33
60 – 65	-9	-9	-1	-9
65 - 70	-6	-7	0	-9
70 – 75	-1	-1	0	-1
> 75	0	0	0	0

Tabla 35. Variación de habitantes de Vigo expuestos (expresados en centenas), debido a la AP-9V, tras aplicar una hipotética reducción de velocidad a 50 km/h, respecto a la situación actual

Figura 40. Niveles de ruido nocturno, Ln (dBA), en un entorno de la AP-9V. Izquierda, situación actual; derecha, tras una hipotética reducción de velocidad

En la siguiente tabla se **resumen** todas las medidas **recogidas y cuantificadas** en los datos de exposición del **PAR de la 4ª Fase**, que tienen previsto su ejecución en los próximos 5 años.

TIPO DE MEDIDA	CÓDIGO plannedMeasureRoad	ENTORNO DE APLICACIÓN	MEDIDA ADOPTADA
REDUCCIÓN DE speedReduction, measureAtSource VELOCIDAD		ZBE Vigo, Rúa Barcelona, Rúa Conde Gondomar, Rúa Illas Baleares, Rúa Illas Canarias, Rúa Nazario González, Rúa Pintor Colmeiro, Rúa Ramón Valle Inclán, Rúa Ramón y Cajal, Rúa Salamanca, Rúa San Amaro, Rúa Sevilla, Rúa Tarragona, Rúa Valencia, Rúa Zamora y Rúa Zaragoza	Reducción de la velocidad máxima a 20 km/h
REDUCCIÓN DE VELOCIDAD	speedReduction, measureAtSource	Avenida Arquitecto Palacios (entre Av. de Castrelos y Centro Comercial Gran Vía) y VG-20 (en el entorno del Plan Parcial de Navia)	Reducción de la velocidad máxima a 50 km/h
ASFALTADO ACÚSTICO	roadSurface, measureAtSource	Av. das Camelias, Av. da Florida, Av. da Gran Vía, Av. de Castelao, Av. de Castrelos, Av. de Emilio Martínez Garrido, Av. do Alcalde Portanet, Av. do Alcalde Gregorio Espino, rúa Areal (entre García Barbón y rotonda da Paellera), Jenaro de la Fuente, Pi y Margall, Plaza América, Plaza España, Travesía de Vigo (entre Jenaro de la Fuente y cruce con Aragón), Urzáiz-Colón (entre Policarpo Sanz y Av. da Gran Vía) y Venezuela	Sustitución del asfalto actual por asfalto acústico poroso (CNOSSOS-EU "NL 03")
cyclingWalkingIncrease, PEATONALIZACIÓN otherTrafficManagementMeasure, measureAtSource		Porta do Sol, Elduayen y Paseo de Alfonso XII	Peatonalización y deriva del tráfico a través de un túnel subterráneo

Tabla 36. Resumen de las medidas propuestas para el PAR de la 4ª Fase y código identificador

9. SÍNTESIS DE RESULTADOS DEL PAR

9.1. SÍNTESIS GENERAL

Según el análisis de los resultados obtenidos en la 4ª Fase del M.E.R. de Vigo, se concluye que la fuente de ruido predominante es el tráfico viario, muy por encima del ruido industrial y ferroviario. Por tanto, la práctica totalidad de las medidas descritas en el presente Plan de Acción contra el Ruido se centran en reducir los niveles de ruido viario en aquellos puntos que concentran mayor exposición acústica de la población.

Las medidas, tal como se detalla en el apartado 8.4, se resumen en dos tipos: **reducción de la velocidad** máxima en las ZBE, en las calles periféricas de Avenida da Gran Vía, en la VG-20 y en la Avenida Arquitecto Palacios; y **asfaltado acústico** de los principales ejes de media/gran capacidad del municipio. Adicionalmente, se cuantifican otras medidas de menor impacto, como la peatonalización de Paseo de Alfonso XII, Elduayen y Porta do Sol. En la Tabla 36 se muestra un resumen de las medidas propuestas para su aplicación en el presente PAR, previstas para su ejecución en los próximos 5 años.

No obstante, otras medidas no cuantificables actualmente pueden llegar a suponer reducciones significativas de la exposición de la población, como es el plan de desarrollo urbano Vigo Vertical, la remodelación futura de la Avenida de Madrid, o la toma de medidas de reducción de ruido en las infraestructuras y actividades del Puerto de Vigo, o sobre la autopista AP-9V.

En los siguientes apartados se procede a la descripción de los resultados obtenidos con las medidas propuestas para el PAR, en términos de reducción de la exposición al ruido de los habitantes de Vigo, así como a los indicadores de riesgos para la salud y sus costes asociados. En los próximos años se tiene previsto el seguimiento de las medidas mediante mediciones y cálculos, con el objetivo de evaluar los resultados del plan de acción.

9.2. RESULTADOS DE LA APLICACIÓN DE LAS MEDIDAS DEL PAR

El total de las medidas contempladas en el PAR se ejecutan sobre las fuentes de ruido viario dentro del municipio que, tal como se indica en el apartado 6.3.1, conforman la fuente de ruido predominante, suponiendo prácticamente un 99% del ruido total dentro del municipio. Los resultados de aplicar las medidas propuestas en el PAR se muestran en la siguiente tabla en centenas de habitantes expuestos.

NIVEL DE RUIDO		CENTENAS DE HAE PUESTOS A RUID		
(dBA)	DÍA	TARDE	NOCHE	24 HORAS
< 50	756	695	1782	548
50 – 55	492	504	600	469
55 – 60	544	539	477	540
60 – 65	845	861	51	772
65 – 70	260	297	1	531
70 – 75	14	13	0	49
> 75	0	0	0	1

Tabla 37. Habitantes de Vigo expuestos (expresados en centenas), debido al tráfico viario, tras aplicar las medidas del PAR-2024

Tomando como referencia los rangos de exposición de la 4° Fase del MER, tras la aplicación de las medidas propuestas en el PAR se obtiene que entre el 9% y el 11% de la población se ve expuesta a niveles de ruido en fachada $L_d \ge 65$ dBA y $L_e \ge 65$ dBA, mientras que entre el 18% y el 20% se ve expuesta

a niveles de ruido en fachada $L_n \ge 55$ dBA y $L_{den} \ge 65$ dBA. Esto supondría una reducción de hasta el 48% en los periodos de día y tarde, y en torno al 30% en los periodos de noche y 24 horas, respecto a los niveles de exposición obtenidos en los resultados del MER. En total, se estima que entre 23.000 y 26.000 personas se pueden ver beneficiadas por las medidas descritas en el PAR dentro de estos rangos de evaluación.

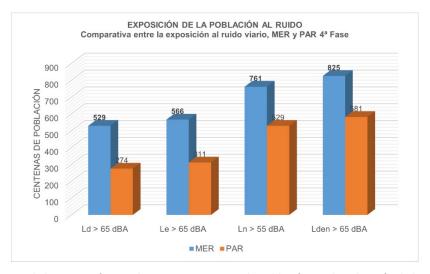


Tabla 38. Comparativa de la exposición a ruido viario en centenas de población tras la aplicación de las medidas del PAR, en los rangos de referencia analizados para el MER de la 4ª Fase

Por otro lado, tomando como referencia los rangos objetivo de exposición de la 4^{a} Fase del PAR, tras la aplicación de las medidas propuestas, se obtiene que en torno al 58% de la población se encuentra expuesta a niveles de ruido en fachada $L_{d} \geq 55$ dBA y $L_{e} \geq 55$ dBA, alcanzando hasta un 65% de la población expuesta a niveles $L_{den} \geq 55$ dBA. La exposición en el periodo nocturno resulta tal que un 39% de la población se vería expuesta a niveles de ruido en fachada $L_{n} \geq 50$ dBA. El análisis de exposición de la población en estos rangos de evaluación supone reducciones inferiores a las de los resultados obtenidos en el MER, encontrándose en torno al **16% de reducción** en el periodo **nocturno**, y en torno al **5% de reducción** en el **resto de los periodos** de evaluación. En total, se estima que, dentro de estos rangos de evaluación, en periodo **nocturno** aproximadamente **22.000 personas** se pueden ver **beneficiadas** por las medidas propuestas, mientras que en el resto de periodos dicha cifra se situaría en torno a las **9.000 personas**.

Tabla 39. Comparativa de la exposición a ruido viario en centenas de población tras la aplicación de las medidas del PAR, en los rangos analizados para el PAR de la 4ª Fase

En la siguiente tabla se muestra el aumento y la reducción (resaltado en color verde y con valor negativo) del número de habitantes expresado en centenas tras la aplicación de las medidas propuestas en el PAR, donde se constata la efectividad de las medidas, obteniendo reducciones significativas en los rangos más altos de ruido, en los diferentes periodos del día. Como es de esperar, una reducción de la exposición en los rangos más altos implica un aumento de la exposición en los rangos más bajos, indicador a su vez de la mejora de la calidad de las molestias por ruido en la población.

NIVEL DE RUIDO		ÓN DE CENTENAS PUESTOS A RUID		
(dBA)	DÍA	TARDE	NOCHE	24 HORAS
< 50	51	49	217	36
50 – 55	37	37	15	44
55 – 60	97	87	-120	57
60 – 65	71	80	-94	106
65 – 70	-224	-218	-18	-122
70 – 75	-31	-37	0	-110
> 75	0	-1	0	-12

Tabla 40. Variación teórica de habitantes de Vigo (en centenas) expuestos en fachada al ruido debido al tráfico viario, tras aplicar las medidas descritas en este PAR con respecto a los resultados del último MER

9.3. INDICADORES DE RIESGO PARA LA SALUD

En base a la metodología descrita en el apartado 12, se obtiene la población expuesta a los indicadores de riesgo para la salud o por ruido y sus costes asociados. En la siguiente tabla se resumen, por tanto, los resultados obtenidos para los **indicadores de riesgo para la salud**, según los resultados analizados del MER y previsión tras la aplicación de las medidas propuestas en este PAR.

INDICADORES SEGÚN SITUACIÓN MER 4ªFASE (AÑO 2022)								
ECI MI AGS						SS		
Fuente	Personas	%	Personas	%	Personas	%		
Ruido Tráfico	324	0,11%	44.498	15,29%	12.147	4,17%		
Ruido Ferroviario	-	-	88	0,03%	24	0,008%		

INDICADORES SEGÚN SITUACIÓN PREVISTA TRAS PAR 2024								
	ECI (PAR) MI AGS							
Fuente	Personas	%	Personas	%	Personas	%		
Ruido Tráfico	279	0,10%	40.606	13,95%	10.739	3,69%		
Ruido Ferroviario	-	-	88	0,03%	24	0,008%		

Tabla 41. Comparativa de los indicadores de riesgo para la salud entre la situación del MER (arriba) y la prevista con las actuaciones del presente PAR (abajo)

Tras la aplicación de las medidas descritas en este PAR, en base a los resultados mostrados en la tabla anterior, se estima una reducción de 45 personas en lo relativo a Enfermedades Cardiacas Isquémicas (ECI), de 3.892 personas en cuanto a Molestias Intensas (MI) y de 1.408 personas en lo referente a Alteraciones Graves del Sueño (AGS). En términos porcentuales, la aplicación del PAR puede suponer reducciones entre el 8% y el 14% en lo que respecta a los efectos perjudiciales sobre la salud.

10. CONCLUSIONES

El objetivo principal del presente Plan de Acción contra el Ruido es el de analizar la situación acústica del municipio de Vigo y planificar todas aquellas actuaciones que se consideren necesarias para reducir la contaminación acústica y la exposición de su territorio y de sus residentes a niveles excesivos de ruido.

Entre los años 2008 y 2012 el Concello de Vigo invirtió cerca de 75 millones de euros en más de 80 actuaciones que contribuyeron en su momento a mejorar el confort acústico en su entorno de influencia. La inversión ha continuado entre los años 2013 y 2024, donde se han invertido aproximadamente 100 millones de euros en casi 170 actuaciones, principalmente en humanizaciones y ensanches de calles y barrios, reasfaltado y arreglo de pavimentos y mejora de infraestructuras (trazados, curvas, etc.), así como actuaciones de accesibilidad, adaptación y reparación de entornos como con el plan Vigo Vertical.

AÑO	CONCEPTO	GASTO TOTAL	
2013-2017	HUMANIZACIONES, MEJORA DE INFRAESTRUCTURAS Y ACCESIBILIDAD	64.808.493,20 €	
2018-2024	HUMANIZACIONES Y MEJORA DE INFRAESTRUCTURAS	23.860.924,01 €	
2018-2024	VIGO VERTICAL	11.530.758,54 €	
TOTAL	100.200.175,75 €		

Tabla 42. Resumen de inversiones en las actuaciones ejecutadas entre 2013 y 2024

Todas estas actuaciones han contribuido, en mayor o menor grado, a mejorar la calidad del entorno en el que se han desarrollado y, con ello, las condiciones de habitabilidad, confort acústico y convivencia de sus habitantes. La política urbanística y ambiental del Concello de Vigo tiene previsto continuar en los próximos años con la línea establecida de creación de una ciudad más amable, limpia y habitable para sus ciudadanos. Así, en los próximos 5 años se proyecta destinar más de 26 millones de euros en nuevas actuaciones planificadas en torno a la humanización de nuevas calles y entornos de la ciudad, así como para seguir el plan de desarrollo urbano Vigo Vertical.

AÑO	CONCEPTO	GASTO TOTAL		
2024-2029	HUMANIZACIONES Y MEJORA DE INFRAESTRUCTURAS	23.577.044,72 €		
2024-2029	VIGO VERTICAL 2.593.647,55 €			
TOTAL	26.170.692,27 €			

Tabla 43. Resumen de inversiones en las actuaciones previstas entre 2025 y 2029

Además de estas actuaciones, que promoverán el desarrollo sostenible de la ciudad y mejorarán la movilidad y el confort de la ciudadanía, en el presente Plan de Acción contra el Ruido se han diseñado una serie de medidas específicas, con el objetivo principal de reducir la exposición al ruido de la población en los entornos de mayor afección, reduciendo así también los efectos de riesgo sobre la salud de los habitantes. De los resultados analizados en el MER de la 4ª Fase, se concluye que el principal foco de ruido responsable de la exposición al ruido es el tráfico viario, especialmente en las zonas de mayor densidad poblacional, por lo que las medidas aquí contempladas se centran sobre estas fuentes de ruido.

Estas medidas, resumidas en la siguiente tabla, pueden agruparse en dos grandes categorías: reducción de la velocidad máxima en las ZBE, en las calles periféricas de Avenida da Gran Vía, en la VG-20 y en la Avenida Arquitecto Palacios; y asfaltado acústico de los principales ejes de media/gran capacidad del municipio, tales como la Avenida da Gran Vía, Avenida de Castelao o Jenaro de la Fuente.

TIPO DE MEDIDA	ENTORNO DE APLICACIÓN	MEDIDA ADOPTADA
REDUCCIÓN DE VELOCIDAD	ZBE Vigo, Rúa Barcelona, Rúa Conde Gondomar, Rúa Illas Baleares, Rúa Illas Canarias, Rúa Nazario González, Rúa Pintor Colmeiro, Rúa Ramón Valle Inclán, Rúa Ramón y Cajal, Rúa Salamanca, Rúa San Amaro, Rúa Sevilla, Rúa Tarragona, Rúa Valencia, Rúa Zamora y Rúa Zaragoza	Reducción de la velocidad máxima a 20 km/h
REDUCCIÓN DE VELOCIDAD	Avenida Arquitecto Palacios (entre Av. de Castrelos y Centro Comercial Gran Vía) y VG-20 (en el entorno del Plan Parcial de Navia)	Reducción de la velocidad máxima a 50 km/h
ASFALTADO ACÚSTICO	Av. das Camelias, Av. da Florida, Av. da Gran Vía, Av. de Castelao, Av. de Castrelos, Av. de Emilio Martínez Garrido, Av. do Alcalde Portanet, Av. do Alcalde Gregorio Espino, rúa Areal (entre García Barbón y rotonda da Paellera), Jenaro de la Fuente, Pi y Margall, Plaza América, Plaza España, Travesía de Vigo (entre Jenaro de la Fuente y cruce con Aragón), Urzáiz-Colón (entre Policarpo Sanz y Av. da Gran Vía) y Venezuela	Sustitución del asfalto actual por asfalto acústico poroso (CNOSSOS-EU "NL 03")
PEATONALIZACIÓN	Porta do Sol, Elduayen y Paseo de Alfonso XII	Peatonalización y deriva del tráfico a través de un túnel subterráneo

Tabla 44. Resumen de las medidas propuestas para el PAR de la 4ª Fase

La aplicación de las medidas descritas tiene un claro efecto positivo en los datos de exposición de la población a **niveles excesivos de ruido**, estimando **reducciones** teóricas de hasta el **48%** en cuanto a población expuesta a niveles de ruido en fachada $L_d \ge 65$ dBA y $L_e \ge 65$ dBA, y de en torno al **30%** en cuanto a población expuesta a niveles de ruido en fachada $L_n \ge 55$ dBA y $L_{den} \ge 65$ dBA, beneficiando a entre **23.000 y 26.000 personas** con respecto a los resultados obtenidos en el último MER.

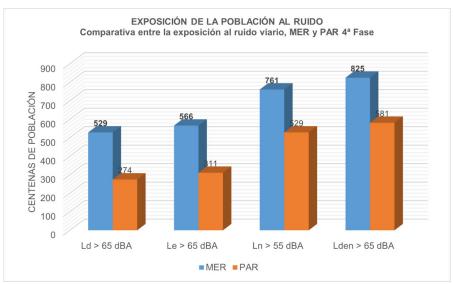


Tabla 45. Comparativa de la exposición de población a niveles elevados de ruido viario, entre los resultados obtenidos en el último MER y los previstos tras la aplicación de las medidas descritas en este PAR

Asimismo, la aplicación de estas medidas también tiene consecuencias positivas, más moderadas, sobre la exposición de la población a **niveles medios de ruido**, alcanzando **reducciones** teóricas del **16%** en cuanto a población expuesta a niveles de ruido en fachada $L_n \ge 50$ dBA, y de cerca del **5%** en lo relativo a población expuesta a niveles de ruido en fachada $L_d \ge 55$ dBA, $L_e \ge 55$ dBA y $L_{den} \ge 55$ dBA. En

total, se estima que, en dichos rangos de ruido, la implantación de las medidas propuestas en el PAR puede llegar a beneficiar a unas **22.000 personas** en periodo nocturno y a unas **9.000 personas** en el resto de los periodos.

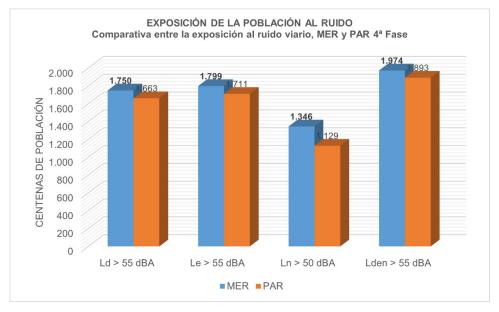


Tabla 46. Comparativa de la exposición de población a niveles medios de ruido viario, entre los resultados obtenidos en el último MER y los previstos tras la aplicación de las medidas descritas en este PAR

En cuanto a los beneficios sobre los indicadores de riesgo para la salud, se estima que, tras la aplicación de las medidas propuestas en el PAR, un total de **45 personas** experimenten una **reducción** de efectos perjudiciales debido a **Enfermedades Cardiacas Isquémicas** (ECI), de **3.892 personas** debido a **Molestias Intensas** (MI) y de **1.408 personas** debido a **Alteraciones Graves del Sueño** (AGS), lo que supone **reducciones** de entre un **8% y un 14%**.

INDICADORES SEGÚN SITUACIÓN MER 4ºFASE (AÑO 2022)						
	ECI MI AGS				SS	
Fuente	Personas	%	Personas	%	Personas	%
Ruido Tráfico	324	0,11%	44.498	15,29%	12.147	4,17%
Ruido Ferroviario	-	-	88	0,03%	24	0,008%

INDICADORES SEGÚN SITUACIÓN PREVISTA TRAS PAR 2024						
	ECI	(PAR)	MI		AGS	
Fuente	Personas	%	Personas	%	Personas	%
Ruido Tráfico	279	0,10%	40.606	13,95%	10.739	3,69%
Ruido Ferroviario	-	-	88	0,03%	24	0,008%

Tabla 47. Comparativa de los indicadores de riesgo para la salud entre la situación del MER 4ªfase y del PAR

En base a los resultados de reducción en la exposición a los valores límite y a los indicadores de riesgo para la salud, en relación a los obtenidos en el MER, se concluye que se cumplen los objetivos planteados en el PAR descritos en el apartado 4.5.

En los próximos años se tiene previsto el seguimiento y evaluación de las medidas propuestas en el presente Plan de Acción contra el Ruido, bien mediante mediciones y/o bien mediante cálculos, con el objetivo de monitorizar y constatar la efectividad de las mismas, así como garantizar su correcta aplicación.

11. ANEXO I. PROCESO DE SELECCIÓN DE ZONAS TRANQUILAS

11.1. DEFINICIÓN

Para la definición de **Zona Tranquila** se parte de las descripciones dadas en la legislación acústica vigente y demás documentos de referencia:

- Directiva END: un área tranquila en una aglomeración es una zona delimitada por la autoridad competente que no está expuesta a unos valores límites (L_{den} u otro indicador apropiado) definidos por un Estado Miembro.
- 2. Ley 37/2003, de 17 de noviembre, del Ruido, en lo referente a zonificación acústica:
 - **q. Zonas tranquilas en las aglomeraciones**: los espacios en los que no se supere un valor, a fijar por el Gobierno, de un determinado índice acústico.
 - **r. Zonas tranquilas en campo abierto**: los espacios no perturbados por ruido procedente del tráfico, actividades industriales o actividades deportivo-recreativas.
- 3. El documento **QUADMAP** Guidelines Guidelines for the identification, selection, analysis and management of quiet urban areas, propone como definición que "Una QUA Quiet Urban Area— es un área urbana cuyo estado actual o uso futuro requiere un entorno acústico específico que contribuye al bienestar de la población".
- 4. **Real Decreto 1513/2005**, artículo 10, apartado b): los planes de acción tendrán por objeto proteger las zonas tranquilas contra el aumento del ruido.
- Real Decreto 1367/2007, artículo 6, sobre la revisión de las zonas: como máximo, la delimitación de áreas acústicas, entre ellas las zonas tranquilas, deberán realizarse cada diez años desde su aprobación.

11.2. SOBRE EL SONIDO, EL RUIDO Y EL CONCEPTO DE ZONA TRANQUILA

Con carácter general, la declaración de zonas tranquilas no implica que no puedan realizarse en ellas, por ejemplo, actividades de ocio. A continuación, se resumen una serie de consideraciones extraídas de la guía de buenas prácticas en zonas tranquilas de la EEA (Good practice guide on quiet areas. EEA TEchnical Report No 4/2014. ISSN 1725-2237).

- 1. Una Zona Tranquila no es una zona en absoluto silencio. Se trata de un área cuyo sonido natural no está afectado por los ruidos perjudiciales para la salud generados por la actividad humana. No es lo mismo estar en un área contaminada con ruido de tráfico con un nivel de 65 dBA que estar disfrutando del sonido de un oleaje con 65 dBA.
- 2. Una Zona Tranquila en un entorno urbano se trata de una zona donde el nivel de ruido no excede un valor concreto de un determinado indicador de ruido. Pueden detectarse ruidos procedentes de industrias, tráfico y actividades, pero en un nivel inferior al establecido. Ejemplos: un parque en el centro de la ciudad, o una zona residencial con baja actividad de tráfico.
- 3. Una Zona Tranquila en **campo abierto** o en un **parque natural** es un área delimitada por la autoridad competente donde no existe un ruido dominante generado por la actividad humana.

Su paisaje sonoro natural se percibe libre de influencias de la actividad humana. Un ejemplo claro en el caso del municipio de Vigo sería el de la Islas Cíes.

11.3. VALORES LÍMITE

11.3.1. Antecedentes

El valor límite de referencia utilizado en el documento *QUADMAP Guidelines* es el L_{den} ≤ 55 dBA:

- 1. Se utiliza actualmente en la definición de áreas tranquilas en varios estados miembros y en diversas ciudades europeas, como, por ejemplo, Oslo, Leipzig, Varsovia o París, entre otras.
- 2. Este valor es coherente con el estudio presentado en la guía de buenas prácticas para zonas tranquilas en la Guía de buenas prácticas de la EEA: tal como muestra la figura, para este valor límite, al menos el 50% de la población percibiría la zona como de buena calidad acústica.

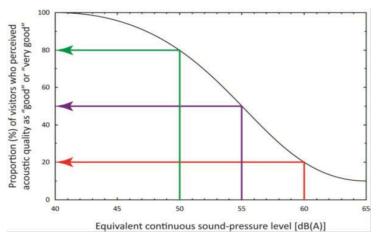


Tabla 48. Porcentaje (%) de población que percibe el área como "buena" o "muy buena" en función del nivel de ruido

En la Tabla 49 se recoge un resumen para algunas ciudades europeas, con los límites y las acciones realizadas para la evaluación y declaración de zonas tranquilas. Esta tabla se ha obtenido de la Guía de buenas prácticas de la EEA, seleccionando aquellas ciudades cuyos criterios parecen realistas y plausibles en un municipio como Vigo. En la mayoría de los casos se utiliza el indicador L_{den}. En algún caso, como en Irlanda del Norte, se introduce además un límite para el nivel noche. Existen ciudades donde se toma como criterio que las áreas tengan un tamaño mínimo y que sean accesibles.

A priori, a la vista del resultado del Mapa Estratégico de Ruidos de la aglomeración de Vigo, en su 4ª Fase de aplicación de la Directiva 2002/49/CE, parece viable establecer una propuesta de zonas tranquilas siguiendo criterios y métodos similares a los planteados en las ciudades recogidas en la citada tabla.

Ciudad	Indicador y límite	Método
Oslo (Noruega)	L _{den} < 55 dBA	 Discusión con autoridades responsables para la identificación de zonas candidatas. Revisión de las zonas verdes catalogadas y los puntos de encuentro en Oslo. Utilización de los resultados del mapa de ruido. Visitas a las zonas. Discusión con representantes de distintos distritos de la ciudad y evaluación del interés.

Leipzig (Alemania)	L _{den} < 55 dBA	 Extensiones mínimas de terreno: 100 Hectáreas en el exterior de aglomeraciones. 20 Ha en el interior de aglomeraciones. 5 dB de diferencia entre la zona central y el límite dentro de las aglomeraciones.
Lyon (Francia)	L _{den} < 50 dBA	 Accesibilidad de la zona. Estudio sobre el mapa de ruido.
Bilbao (España)	L _d , L _e < 60 dBA	 Superficie > 2 Ha. Accesible (acceso abierto). Zonas con valor recreativo y cultural. Aprobación por el Concello.
Irlanda del Norte	L _{den} < 55 dBA L _n < 55 dBA	 Evaluación sobre los mapas estratégicos de ruido. Sólo se aplica en aglomeraciones y en áreas declaradas como candidatas a zonas tranquilas.

Tabla 49. Indicadores, límites y método para la declaración de zonas tranquilas en diversas ciudades europeas (fuente: Good practice guide on quiet areas. EEA TEchnical Report No 4/2014. ISSN 1725-2237)

11.3.2. Propuesta de límites para la declaración de Zona Tranquila en el municipio de Vigo

Dado que es la primera vez que se realiza un estudio para la declaración de Zonas Tranquilas, resulta ciertamente exigente y complejo evaluar inicialmente niveles globales de ruido L_{den} inferiores a 55 dBA. En este primer análisis, parece más coherente, a criterio técnico, basarse en el artículo 14, apartado 4 del Real Decreto 1367/2007, que se recoge a continuación:

Artículo 14. Objetivos de calidad acústica para ruido aplicables a áreas acústicas.

[...] 4. Como objetivo de calidad acústica aplicable a las zonas tranquilas en las aglomeraciones y en campo abierto, se establece el mantener en dichas zonas los niveles sonoros por debajo de los valores de los índices de inmisión de ruido establecidos en la tabla A, del anexo II, disminuido en 5 decibelios, tratando de preservar la mejor calidad acústica que sea compatible con el desarrollo sostenible.

El documento "Instrucciones para la entrega de los datos asociados a los mapas estratégicos y los planes de acción contra el ruido de la cuarta fase" hace referencia al mismo criterio del Real Decreto 1367/2007, descrito previamente, concluyendo que en el caso de que se definan zonas tranquilas en el PAR, los objetivos de calidad de las mismas serán, al menos, los mostrados en la Tabla 50.

Tipo de Área Acústica		Índices de Ruido (dBA)			
		L _d	L e	Ln	L _{den} [1]
e)	Sectores del territorio con predominio de suelo de uso sanitario, docente y cultural que requiera una especial protección contra la contaminación acústica.	55	55	45	56
a)	Sectores del territorio con predominio de suelo de uso residencial.	60	60	50	61

[1] Valores de L_{den} calculados mediante la Ecuación 1.

Tabla 50. Valores de inmisión establecidos en la tabla A del anexo II del Real Decreto 1367/2007, disminuidos en 5 dB

Según este documento parece lógico establecer dos tipos de límite para Zonas Tranquilas, según el área acústica en que se emplacen. Y por simplicidad, y para no manejar en cada una tres límites diferentes (uno para el día y la tarde, uno para la noche y uno para el periodo global), se propone utilizar el nivel equivalente día-tarde-noche, L_{den}, según se muestra en la Tabla 50, aproximándolo de la siguiente manera:

- Para áreas urbanas, con uso predominante residencial, un L_{den} ≤ 60 dBA.
- Para áreas fuera del núcleo urbano, con especial interés de protección acústica, parques naturales, forestales, etc., un L_{den} ≤ 55 dBA.

Estos límites se considerarán únicamente para los niveles procedentes de la actividad humana: tráfico, industria, tráfico ferroviario y aéreo. En el caso de evaluar niveles superiores debido a las características naturales del entorno, se verificará que los niveles evaluados se corresponden con sonidos naturales que enmascaran cualquier otro ruido artificial.

11.4. METODOLOGÍA

Para la elaboración de una lista de Zonas Tranquilas, se propone el siguiente método:

- 1. Discusión con las autoridades de la ciudad en materia de medio ambiente sobre las zonas de potencial declaración.
- 2. Revisión de zonas de interés que cumplan límites de zonas tranquilas para áreas urbanas y extraurbanas a partir del MER en vigor. Propuesta de zonas candidatas.
- 3. Campaña de visita y mediciones.
- 4. Evaluación de accesibilidad, estado, servicios, uso.
- 5. Análisis de resultados. Adaptación de los niveles propuestos a la realidad de las zonas tranquilas.
- 6. Presentación de los resultados al departamento de medioambiente del Concello de Vigo.
- 7. Listado de candidatas y aprobación.
- 8. Estrategia futura y plan de revisiones futuras.

La declaración de un área como Zona Tranquila no supondrá en ningún caso la imposición de límites ruido distintos a los recogidos por la ley actual. Esta declaración supone el reconocimiento de una calidad acústica excelente. Si por cualquier motivo los niveles de ruido se incrementaran en la zona, se perdería su estatus de Zona Tranquila y, en su momento, deberá informarse de la variación del estatus en futuras revisiones de los planes de acción.

11.5. REVISIÓN PRELIMINAR DE LAS ZONAS CANDIDATAS

La siguiente figura muestra, en una primera evaluación, el emplazamiento aproximado de las zonas que pueden ser consideradas tranquilas dentro del municipio de Vigo, dadas sus características.

Figura 41. Ubicación de las posibles zonas candidatas a la declaración de Zonas Tranquilas


La figura anterior incluye la ubicación de zonas como la Playa de Samil, el Parque de A Bouza y el Parque de Castrelos. Estas zonas, aun pudiendo ser candidatas, presentan cierta incertidumbre por diversos motivos:

- 1. La Playa de Samil será sometida a modificaciones, con las que se prevé que se mejore su calidad acústica actual. En concreto, se eliminará el paseo actual para construir un paseo ecológico que permita recuperar el complejo dunar con el que contaba originalmente la playa. Las dunas actuarán como pantalla natural ante el ruido de tráfico rodado, permitiendo reducir el impacto acústico actual en la playa. Se evaluará, por tanto, la situación sonora de la playa en futuras revisiones de la declaración de Zonas Tranquilas.
- 2. En general, la orografía de Vigo favorece la existencia de ciertos emplazamientos con niveles de ruido reducidos, a pesar de tener focos de ruido importantes en su cercanía. Tal es, por ejemplo, el caso del Monte do Castro. Sin embargo, los parques que se sitúan en la misma cota que los viales adyacentes tienen un impacto de ruido elevado para poder ser considerados zonas tranquilas. La Figura 42 ilustra los casos de A Bouza y del Parque de Castrelos:
 - i. El Parque de A Bouza, situado en la proximidad de la VG-20 y la Avenida de la Florida, está fuertemente impactado por la alta emisión de ruido de tráfico en la zona.
 - ii. El Parque de Castrelos se sitúa en una zona con un fuerte impacto de ruido, rodeado por la Avenida Arquitecto Palacios y la Avenida de Castrelos. No se puede plantear su declaración como zona acústica tranquila en tanto no se reduzca la emisión acústica de estos viales.

 (a) A Bouza, rodeada por VG 20, Avenida de Citröen y Avenida de la Florida

(b) Impacto acústico (L_{den}) en el Parque de A Bouza (comportamiento acústico no homogéneo)

(c) Parque de Castrelos, Avenida de Castrelos y Av. Arquitecto Palacios

(d) Impacto acústico (L_{den}) en el entorno del Parque de Castrelos

Figura 42. Ejemplo de impacto acústico del entorno urbano en parques con la misma cota que los focos emisores

A partir de la evaluación de los resultados de la 4ª Fase del MER de Vigo, se propone considerar como **zonas candidatas a la declaración de Zonas Tranquilas** a las siguientes:

- Espacios Naturales
 - > Islas Cíes
 - > Xunqueira do Lagares
 - > Praia do Vao
- Parques Urbanos. Uso recreacional
 - Parque do Castro
 - A Guía
- Parques forestales, uso recreacional
 - > Parques de Coruxo, Saiáns y San Miguel de Oia
 - > Parque de Beade
 - ➤ Monte Alba/Cepudo
 - Zamáns
 - > Vixiador
 - > A Madroa
 - ➤ Os Pozos
- Zonas residenciales urbanizadas
 - Cabo Estay
 - > Isla de Toralla

Una vez revisada la lista de zonas candidatas a Zonas Tranquilas y aprobada por el departamento competente del Concello de Vigo, se procede a realizar una campaña de mediciones con el objetivo de validar que los niveles de ruido en la zona son efectivamente los esperados para una zona de este tipo.

11.6. ANÁLISIS DE LAS PROPUESTAS DE ZONAS TRANQUILAS

A continuación, se describe cada una de las zonas propuestas como Zona Tranquila, seleccionadas a partir de los resultados de la 4ª fase del MER de Vigo. Para cada una de las zonas se describe, entre otras cosas, su paisaje sonoro, de manera que sea su propio nivel sonoro el que deba preservarse. Se presenta, asimismo, una tabla final indicando los valores obtenidos en la campaña de mediciones, con una casilla de VALIDACIÓN, de manera que, si el resultado de las mediciones concuerda con lo esperado, se entenderá que la candidatura de la zona propuesta está técnicamente validada y se puede proceder a su declaración formal como Zona Tranquila.

11.6.1. Espacios naturales

11.6.1.1. Islas Cíes

Descripción

Las Islas Cíes forman parte del parque natural marítimo-terrestre de las Illas Atlánticas. Se trata de un archipiélago formado por tres islas: la Isla Norte (Monteagudo), la isla del Medio (del Faro) y la isla Sur (San Martiño). Están situadas en la entrada de la ría de Vigo, alejadas de cualquier foco sonoro de origen artificial, exceptuando el tráfico marítimo que se acerca a las islas. Los niveles sonoros de la isla son, por tanto, los debidos a la actividad natural, como el oleaje o las colonias de gaviotas, principalmente.

Figura 43. Islas Cíes

Paisaje Sonoro

Las Islas Cíes cuentan con una de las colonias más numerosas en el mundo de gaviota patiamarilla. Las más de 18.000 parejas reproductoras computadas hacen que sus sonidos predominen en toda la extensión de estas islas. El mar, el viento y el revoloteo de otras especies de aves construyen el paisaje sonoro general del archipiélago.

Focos de ruido próximos

Las Islas carecen de focos de origen artificial próximos que supongan una invasión de su espacio.

Comentarios

Con el objetivo de preservar su paisaje sonoro natural, sería interesante abordar una caracterización de los niveles sonoros de las islas y una caracterización exhaustiva de su paisaje sonoro.

Validación con mediciones

Las islas no cuentan con focos artificiales de ruido que interfieran con su paisaje sonoro natural, por lo que no se ha procedido a realizar una campaña de mediciones, considerando que el nivel sonoro en su entorno se debe fundamentalmente a las características del entorno natural.

Conclusión

☑ PROCEDE la declaración de ésta como Zona Tranquila.

11.6.1.2. Xunqueira do Lagares

Descripción

Zona situada en la desembocadura del Río Lagares, declarada como no urbanizable de protección del medio natural. Dependiendo de la época del año se puede observar gran variedad de aves, como garzas reales, garcetas comunes, el martín pescador, ánade común, etc.

Figura 44. Ubicación de la Xunqueira do Lagares

Paisaje Sonoro

Se trata de un humedal al que únicamente se puede acceder a su zona perimetral. En la zona indicada en la Figura 45, correspondiente a la zona de medición, se percibe ruido de tráfico alejado y sonidos emitidos por las aves. Se percibe además flujo de agua y el ruido del viento.

Focos de ruido próximos y puntos de muestreo

La Xunqueira se encuentra bajo la zona de influencia de la Rúa Canido, que discurre paralela a la línea de costa. Además, la estación depuradora del Lagares colinda con esta zona, emitiendo ruido claramente perceptible durante el período de día.

Figura 45. Entorno de la Xunqueira del Lagares y propuesta de puntos de muestreo

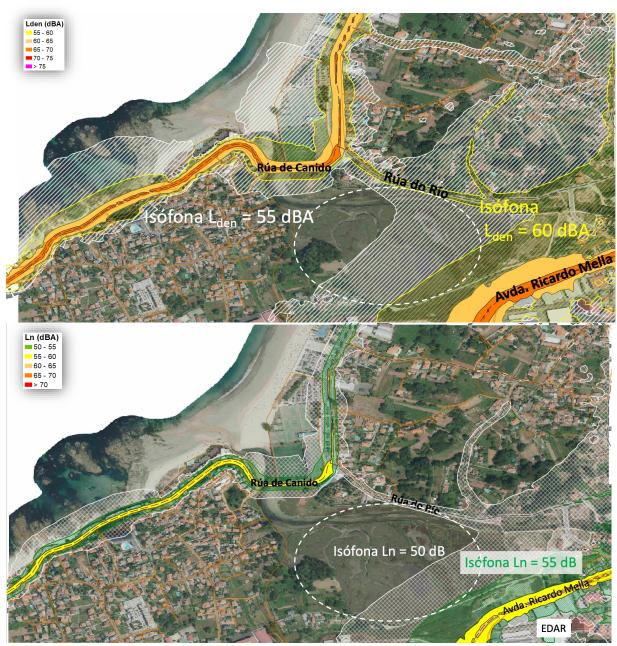


Figura 46. Análisis del mapa de ruido en el entorno de la Xunqueira do Lagares

Validación con mediciones

Aceptada por la	RESULTADOS DE LA CAMPAÑA DE MEDICIONES IN SITU				
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	51,6	48,5	44,2	53,0	SÍ

Tabla 51. Mediciones de ruido en el entorno de la Xunqueira do Lagares

Conclusión

11.6.1.3. Praia do Vao

Descripción

Situada en la parroquia de Coruxo, es una zona de playa recuperada en la que se regeneró el espacio dunar, después de eliminar las pistas deportivas del área. Se trata de un arenal con unos 800 m de largo por 45 m de ancho, separado del foco principal de ruido por el área dunar. Cabe esperar que a medida que la duna siga con su proceso natural de elevación, los niveles de ruido artificial (tráfico viario) en la playa se reduzcan aún más.

Figura 47. Ubicación de la Praia do Vao

Paisaje Sonoro

En la zona de la playa, se percibe únicamente el sonido del mar, sin apreciar interferencia apreciable del tráfico de la zona. El ruido que más interfiere con la tranquilidad del entorno procede de las motocicletas que circulan por la Rúa Canido. El ruido procedente de coches queda más atenuado y enmascarado por el sonido del mar.

Focos de ruido próximos y puntos de muestreo

El foco de ruido más próximo es el tráfico viario que circula por la Rúa Canido. Dadas las características del sonido del mar, con un nivel medio elevado, el paisaje sonoro de la zona enmascara el nivel de ruido de tráfico que es apenas percibido desde la playa.

Figura 48. Entorno de la Praia do Vao y propuesta de puntos de muestreo

Tal como se muestra, la playa está impactada por un nivel de ruido L_{den} máximo de entre 55 y 60 dBA, debido al tráfico de la Rúa Canido.

Figura 49. Análisis del mapa de ruido en el entorno de la Praia do Vao

Validación con mediciones

Aceptada por la	F	RESULTADOS DE LA	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	53,5	51,7	53,7	59,9	SÍ ^[1]

[1] La zona no cumpliría, a priori, el criterio L_{den} \leq 55 dBA debido principalmente a la penalización asociada al nivel de ruido nocturno. No obstante, se comprueba que los niveles de ruido medidos son los debidos principalmente al sonido del mar, muy por encima del ruido viario procedente de la Rúa Canido. Se trata, por tanto, de una zona a declarar como tranquila, al quedar enmascarado el ruido de tráfico y predominar su sonido natural. Durante la realización de las medidas se puso en evidencia el papel de las dunas, evaluando una atenuación sonora de unos 6 dB. Se recomienda realizar un estudio específico sobre la influencia acústica de las dunas.

Tabla 52. Mediciones de ruido en el entorno de la Praia do Vao

Conclusión

☑ PROCEDE la declaración de ésta como Zona Tranquila.

11.6.2. Parques urbanos

11.6.2.1. O Castro

Descripción

Parque urbano, situado en el centro de la ciudad, con una altitud de 149 metros y una superficie aproximada de 21 Hectáreas. Cuenta con multitud de especies de árboles frondosos. En sus faldas se pueden encontrar ejemplares de Cedro Atlántico, Acacias, Castaños, Ginkgo Biloba, Magnolios, Camelios, etc. Este parque urbano es de uso recreacional y cuenta con áreas deportivas y parques infantiles.

Figura 50. Ubicación del Parque de O Castro

Paisaje Sonoro

El Parque de O Castro se caracteriza por el sonido de pájaros, el del movimiento de los árboles por el viento, el de pasos y conversaciones de caminantes y corredores, o el sonido del agua de sus fuentes. Desde su cima se percibe el sonido de fondo de la actividad de la ciudad, pudiendo llegar a percibirse el bullicio lejano de niños jugando en los patios de los diversos colegios que rodean el monte.

Focos de ruido próximos y puntos de muestreo

Las calles principales cuyas isófonas alcanzan las faldas del monte son la Av. da Hispanidade, Marqués de Alcedo, la Av. das Camelias y el inicio de la Calle Venezuela.

Figura 51. Entorno del parque de O Castro y propuesta de puntos de muestreo

La configuración orográfica del parque implica que el nivel de ruido en el MER de Vigo se mantenga con un nivel $L_{den} \leq 55$ dBA, a pesar de estar rodeado por la Av. das Camelias, la Calle Marqués de Alcedo y la Av. da Hispanidade, que son los principales focos de ruido en su entorno.

Figura 52. Análisis del mapa de ruido en el entorno del arque de O Castro

Validación con mediciones

Aceptada por la	i	RESULTADOS DE L	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	52,8	50,5	45,9	54,5	SÍ

Tabla 53. Mediciones de ruido en el entorno del Parque de O Castro

Conclusión

☑ PROCEDE la declaración de ésta como Zona Tranquila, con $L_{den} \le 55$ dBA y $L_n \le 50$ dBA.

11.6.2.2. A Guía

Descripción

Parque urbano, situado en la zona alta de la parroquia de Teis y coronado por la ermita de *Nosa Señora das Neves*. Tradicionalmente era el enclave elegido por las esposas de los marineros vigueses para encender hogueras que sirvieran de guía para regresar a casa. El monte tiene una altitud de 124 m y está cubierto por árboles frondosos. En sus faldas se encuentra el robledal conocido como "Carballeira da Guía".

Figura 53. Ubicación del Monte de A Guía

Paisaje Sonoro

Ruido de fondo de la actividad urbana. Destaca el sonido de los barcos pesqueros que se percibe desde el mirador. Pájaros, el rumor del viento y algunos coches que se aproximan hasta la zona de la ermita.

Focos de ruido próximos y puntos de muestreo

El foco de ruido más próximo es la actividad industrial en su falda, en la zona de Guixar. En cuanto al tráfico rodado, los viales más próximos con nivel de emisión significativa son la Av. de Sanjurjo Badía y la Av. de Galicia.

Figura 54. Entorno del Monte de A Guía y propuesta de puntos de muestreo

Figura 55. Análisis del mapa de ruido en el entorno del Monte de A Guía

Validación con mediciones

Aceptada por la	RESULTADOS DE LA CAMPAÑA DE MEDICIONES IN SITU				
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	45,0	44,8	44,3	50,8	SÍ

Tabla 54. Mediciones de ruido en el entorno de A Guía

Conclusión

☑ PROCEDE la declaración de ésta como Zona Tranquila, con L_{den} ≤ 55 dBA y L_n≤ 50 dBA.

11.6.3. Parques forestales

11.6.3.1. Parques de Coruxo, Saiáns y San Miguel de Oia

Descripción

En este apartado se agrupan los parques de Coruxo, San Miguel de Oia y Saiáns dadas sus características orográficas y acústicas. Los tres parques se sitúan muy próximos entre sí, en las faldas de la misma montaña. Cada uno se ubica dentro de los montes comunales que les dan nombre, siendo el Concello de Vigo el encargado de su gestión.

Los parques de Coruxo, Oia y Saiáns tienen unas superficies de 11, 4 y 2,4 Ha respectivamente, sumando entre los tres un total de 17,4 Ha. Los tres parques cuentan con zonas recreativas (merenderos con mesas, barbacoas y fuentes) y miradores, desde los que se puede disfrutar de excelentes vistas a la ría de Vigo.

Figura 56. Ubicación de los parques forestales de Coruxo, Saiáns y San Miguel de Oia

Paisaje Sonoro

Alejados de focos de ruido viario predominantes, debido a la altitud de estos parques, se percibe principalmente el sonido de los pájaros y del viento.

Focos de ruido próximos y puntos de muestreo

El foco de ruido más próximo es la Carretera de Camposancos, si bien su influencia apenas se percibe, por la gran distancia de ésta a los parques.

Figura 57. Entorno de los parques forestales de Coruxo, Saiáns y San Miguel de Oia y propuesta de puntos de muestreo

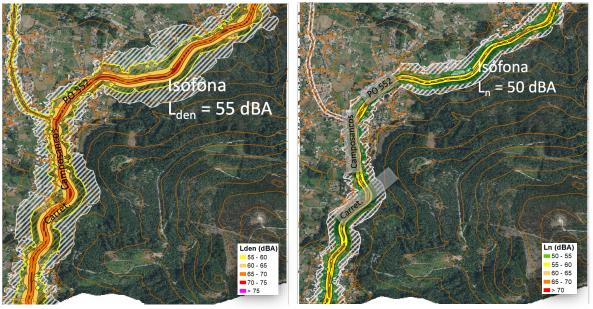


Figura 58. Análisis del mapa de ruido en el entorno de los parques forestales de Coruxo, Saiáns y San Miguel de Oia

Validación con mediciones

Aceptada por la	ı	RESULTADOS DE L	A CAMPAÑA DE N	MEDICIONES IN SIT	-U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	36,7	37,1	35,9	42,6	SÍ

Tabla 55. Mediciones de ruido en el entorno de los parques de Coruxo, Saiáns y San Miguel de Oia

Conclusión

11.6.3.2. Parque de Beade

Descripción

Parque forestal de unos $90.000~\text{m}^2$ de uso forestal con zona recreacional y una elevación máxima de 518~m sobre la ría de Vigo. Incluye merendero con mesas y barbacoas, bar, restaurante y un mirador hacia la ría.

Figura 59. Ubicación del Parque de Beade

Paisaje Sonoro

Se percibe el rumor continuo del tráfico de la AG-57, así como cantos de aves y sonidos procedentes del movimiento de los árboles y del viento. También se percibe el sonido de las actividades de la zona: entrenamientos en el campo de fútbol, trabajadores de la zona, etc.

Focos de ruido próximos y puntos de muestreo

El foco de ruido más próximo es la autovía AG-57, un vial de alta capacidad y, en menor medida, la Av. Clara Campoamor y el vial de circunvalación hacia el campus de la Universidad de Vigo.

Figura 60. Entorno del Parque de Beade y propuesta de puntos de muestreo

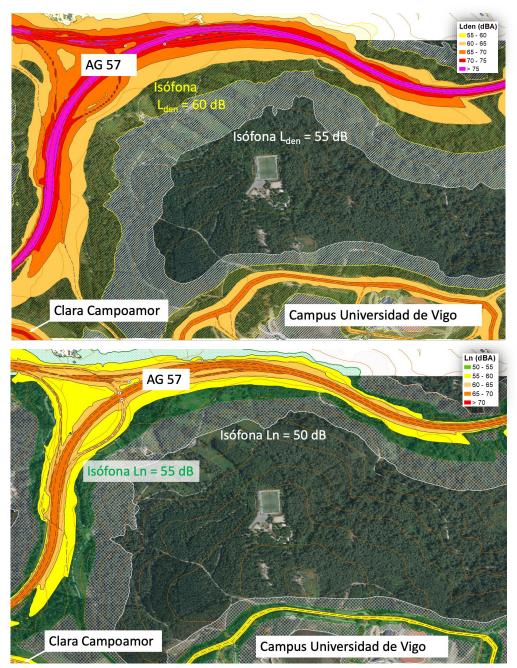


Figura 61. Análisis del mapa de ruido en el entorno del Parque de Beade

Validación con mediciones

Aceptada por la	F	RESULTADOS DE LA	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	46,5	47,0	35,4	47,8	SÍ

Tabla 56. Mediciones de ruido en el entorno del Parque de Beade

Conclusión

11.6.3.3. Parque forestal del Monte Alba y Mirador do Cepudo

Descripción

El parque forestal Monte Alba y del Morador do Cepudo se sitúa en la parroquia de Valladares. Con una superficie de unas 4,2 hectáreas, se eleva hasta los 500 m sobre el nivel del mar, lo que permite disfrutar de lo que para muchos son las mejores vistas panorámicas de la Ría de Vigo. Como otros parques forestales de Vigo, cuenta con servicios de restauración, merenderos y fuentes. En su alto se encuentra la capilla de Nuestra Señora del Alba.

Figura 62. Ubicación del parque forestal del Monte Alba y del Mirador do Cepudo

Paisaje Sonoro

Desde su cumbre, dependiendo de las condiciones de propagación puede escucharse el murmullo de la ciudad con un nivel sonoro muy bajo. En general, en el parque del Monte Alba y en el Mirador do Cepudo únicamente se escuchan los sonidos de pájaros y el rumor del viento al mover los árboles.

Focos de ruido próximos y puntos de muestreo

Está alejado de cualquier fuente de ruido próxima que incida directamente sobre su perímetro.

Figura 63. Entorno del parque forestal del Monte Alba y del Mirador do Cepudo y propuesta de puntos de muestreo

La carretera de Valladares es un vial con baja emisión de ruido, lo que supone que los niveles esperados serán bajos, en base a los datos del MER. Las mediciones realizadas corroboran lo esperado, con muy poca variación entre niveles de día y noche, y siempre por debajo de 40 dB.

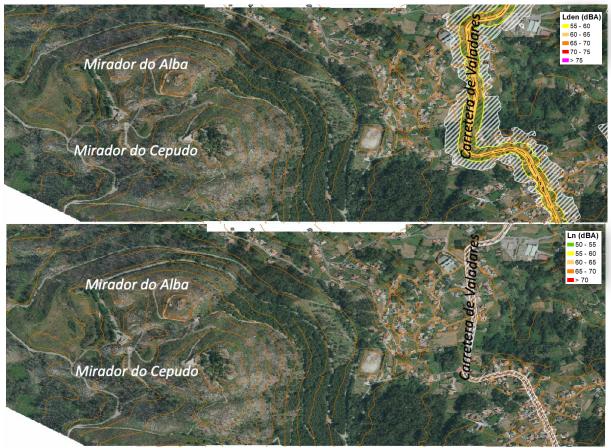


Figura 64. Análisis del mapa de ruido en el entorno del parque forestal del Monte Alba y del Mirador do Cepudo

Validación con mediciones

Aceptada por la	i	RESULTADOS DE L	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	37,5	37,5	36,5	43,2	SÍ

Tabla 57. Mediciones de ruido en el entorno del parque forestal de Monte Alba y Cepudo

Conclusión

✓ PROCEDE la declaración de ésta como Zona Tranquila, con $L_{den} \le 55$ dBA y $L_n \le 50$ dBA.

11.6.3.4. Parque forestal de Zamáns

Descripción

El parque de Zamáns se ubica a 700 m de altura, en la parroquia del mismo nombre, un área rural que, según los resultados del MER, es la zona más tranquila y de mayor calidad acústica de Vigo. Cuenta con una superficie de 5 Ha, con zonas recreativas, con merenderos y fuentes, y zonas de juegos infantiles.

Figura 65. Ubicación del parque forestal de Zamáns

Paisaje Sonoro

Paisaje sonoro característico del entorno rural, con ladridos de perros, el murmullo del viento, el movimiento de los árboles o el sonido de pájaros. Durante las medidas incluso se registró el paso de algún avión, sin que el nivel de ruido producido influyera de forma significativa en los resultados de las mediciones. Se percibe además el paso de algún vehículo.

Focos de ruido próximos y puntos de muestreo

Los focos principales más próximos al parque de Zamáns son la AG-57, que afecta principalmente a la zona del embalse, y la carretera de circunvalación del campus de Vigo. El área que ocupa el parque de Zamáns queda muy alejada de ambos focos, de manera que el ruido generado por éstas no es perceptible.

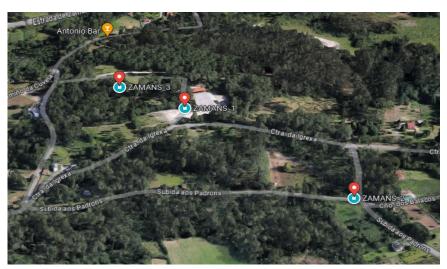


Figura 66. Entorno del parque forestal de Zamáns y propuesta de puntos de muestreo

Figura 67. Análisis del mapa de ruido en el entorno del parque forestal de Zamáns

Validación con mediciones

Aceptada por la	i	RESULTADOS DE L	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	42,6	45,1	35,0	45,6	SÍ

Tabla 58. Mediciones de ruido en el entorno de Zamáns

Conclusión

11.6.3.5. O Vixiador

Descripción

Perteneciente al monte vecinal de Candeán, este parque cuenta con una superficie de 18,5 Ha, con zonas de merendero, área de juegos infantiles y caminos para bicicleta y pasear. Alcanza los 499 metros de altura en su punto más alto, por lo que se encuentra alejado de los principales focos de ruido.

Figura 68. Ubicación del parque forestal de O Vixiador

Paisaje Sonoro

Se aprecia el ruido de fondo de la AP-9 y del aeropuerto de Peinador, aunque en niveles bajos, siendo predominantes los sonidos habituales en parques forestales (viento, vegetación, pájaros, etc.).

Focos de ruido próximos y puntos de muestreo

Los focos de ruido más próximos son la AP-9 y el aeropuerto de Vigo.

Figura 69. Entorno del parque forestal de O Vixiador y propuesta de puntos de muestreo

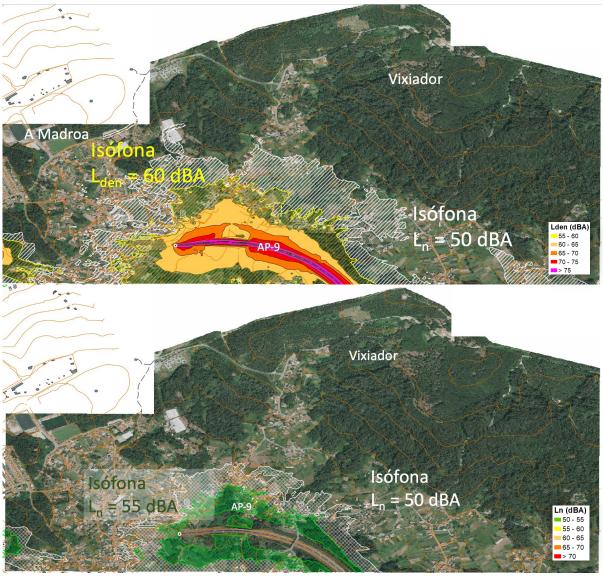


Figura 70. Análisis del mapa de ruido en el entorno del parque forestal de O Vixiador

Validación con mediciones

Aceptada por la	ı	RESULTADOS DE L	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	38,2	38,1	36,7	43,5	SÍ

Tabla 59. Mediciones de ruido en el entorno de O Vixiador

Conclusión

11.6.3.6. A Madroa

Descripción

En el parque de A Madroa, ubicado en la parroquia de Teis, se sitúan las instalaciones del zoológico de Vigo (VigoZoo) y de la ciudad deportiva del Celta de Vigo. Se eleva a unos 325 m de altura sobre la ría, lo que permite disfrutar de excelentes vistas. VigoZoo será además próximamente reconvertido en un centro de ocio y educación ambiental.

Figura 71. Ubicación del parque de A Madroa

Paisaje Sonoro

En el mirador de A Madroa se percibe de fondo el ruido de la autopista AP-9, sonidos procedentes de los campos de entrenamiento del Celta, así como los sonidos habituales en los parques forestales: caminantes, sonidos de pájaros y perros, viento y movimiento de los árboles.

Focos de ruido próximos y puntos de muestreo

El foco de ruido más próximo es la AP-9. No obstante, debido al gran desnivel de A Madroa, apenas recibe impacto sonoro de este vial, por lo que el parque es apto para su consideración como zona tranquila.

Figura 72. Entorno del parque forestal de A Madroa y propuesta de puntos de muestreo



Figura 73. Análisis del mapa de ruido en el entorno del parque de A Madroa

Validación con mediciones

Aceptada por la	1	RESULTADOS DE L	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	49,1	46,3	43,7	51,5	SÍ

Tabla 60. Mediciones de ruido en el entorno de A Madroa

Conclusión

11.6.3.7. Os Pozos

Descripción

El parque de Os Pozos, perteneciente a la parroquia de Valladares cuenta con una superficie aproximada de 11 Ha. Además de contar con las instalaciones habituales de los parques forestales, el parque tiene una laguna artificial donde es habitual encontrar aves acuáticas.

Figura 74. Ubicación del parque de Os Pozos

Paisaje Sonoro

Se percibe vagamente el murmullo del ruido de tráfico lejano, siendo predominante los sonidos de origen natural del parque: cascada de agua de la laguna, ladridos de perros, sonido de pájaros, viento, etc.

Focos de ruido próximos y puntos de muestreo

El foco de ruido más próximo es la VG-20.

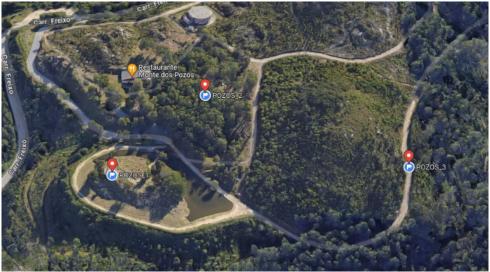


Figura 75. Entorno del parque forestal de Os Pozos y propuesta de puntos de muestreo

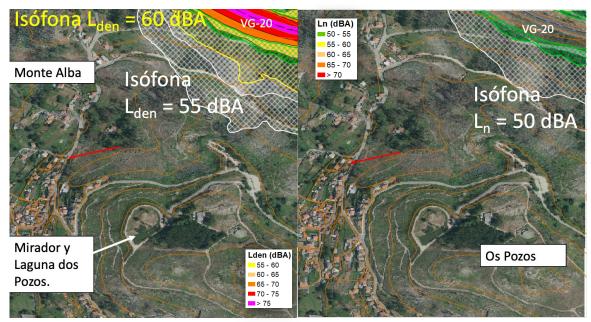


Figura 76. Análisis del mapa de ruido en el entorno del parque de Os Pozos

Validación con mediciones

Aceptada por la	RESULTADOS DE LA CAMPAÑA DE MEDICIONES IN SITU				
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	40,3	45,0	40,0	47,4	SÍ

Tabla 61. Mediciones de ruido en el entorno de Os Pozos

Conclusión

11.6.4. Zonas residenciales urbanizadas

11.6.4.1. Cabo Estay

Descripción

Zona urbana, con chalets y viviendas unifamiliares, limitada por las playas de Sobreira y Fuchiños al norte, y por la Av. de Ricardo Mella al sur.

Figura 77. Ubicación del Cabo Estay

Paisaje Sonoro

Domina claramente el tráfico residencial. Se percibe además el nivel del mar, siendo difícil separar ambas contribuciones.

Focos de ruido próximos y puntos de muestreo

El foco de ruido más próximo es la Av. Ricardo Mella.

Figura 78. Entorno del Cabo Estay y propuesta de puntos de muestreo

El mapa de ruido refleja que esta zona tiene un nivel equivalente $L_{den} \le 55$ dBA, por lo que a priori podría ser considerada Zona Tranquila.

Figura 79. Análisis del mapa de ruido en el entorno del Cabo Estay

Validación con mediciones

En las mediciones in situ se detecta predominio de tráfico residencial en los viales secundarios de la zona, los cuales no están contemplados en el MER. Dicho tráfico, a pesar de no ser muy elevado, es suficiente como para exceder los límites de referencia e ser considerada ésta como una Zona Tranquila.

Aceptada por la		RESULTADOS DE L	A CAMPAÑA DE N	MEDICIONES IN SIT	U
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN
SÍ	59,2	63,1	51,7	63,0	NO

Tabla 62. Mediciones de ruido en el entorno de Cabo Estay

Conclusión

NO PROCEDE la declaración de ésta como Zona Tranquila, por L_{den} > 55 dBA y L_n > 50 dBA.

11.6.4.2. Isla de Toralla

Descripción

Unida la playa del Vao por un puente de uso público, se trata de una isla privada, con acceso restringido al público, de unas 10 Ha de superficie. La isla se encuentra urbanizada, contando con aproximadamente unos 800 habitantes.

Figura 80. Vista de la Isla de Toralla y la Playa del Vao

Validación

Aunque la isla cuenta con un entorno tranquilo, una de las condiciones establecidas en los documentos de buenas prácticas y guías referenciadas en este informe para poder ser considerada como Zona Tranquila, es su accesibilidad. En tanto se trata de una isla privada, sin acceso público, donde no se han podido realizar mediciones acústicas in situ, no procede su declaración como Zona Tranquila.

Aceptada por la	i	RESULTADOS DE LA CAMPAÑA DE MEDICIONES IN SITU								
Oficina de Urbanismo	L _d (dBA)	L _e (dBA)	L _n (dBA)	L _{den} (dBA)	VALIDACIÓN					
SÍ	-	-	-	-	NO ^[1]					

[1] No accesible para la realización de mediciones.

Tabla 63. Mediciones de ruido en el entorno de la Isla de Toralla

Conclusión

NO PROCEDE la declaración de ésta como Zona Tranquila, por su inaccesibilidad.

11.7. DELIMITACIÓN CARTOGRÁFICA DE LAS ZONAS TRANQUILAS

Una vez validadas las zonas candidatas para su declaración como tranquilas, se procede a la delimitación cartográfica de la Zona Tranquila. Para ello, se toman como base las delimitaciones oficiales recogidas en la revisión del PXOM de Vigo del año 2023. Por lo general, se trata de suelos rústicos coincidentes con los parques forestales, espacios protegidos, etc., a excepción de casos urbanos como el de O Castro. De entre todas las capas disponibles, se toma siempre la más representativa de la zona que se delimita.

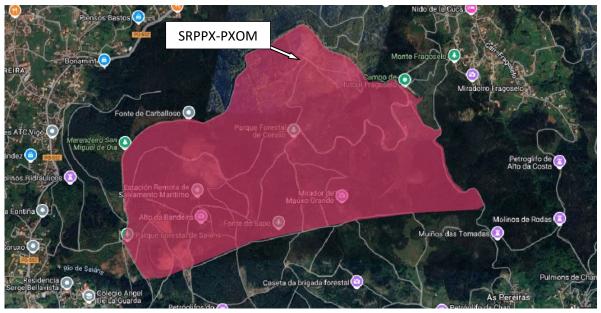


Figura 81. Ejemplo de una capa del PXOM de Vigo en el entorno del Parque forestal de Coruxo, Saiáns y Oia

Según la definición de zona tranquila propuesta, para su validación se debe cumplir el requisito $L_n \le 50$ dBA y $L_{den} \le 55$ dBA, por lo que, una vez escogidas las capas base que delimitan cada zona, éstas se recortan y ajustan a dichas isófonas, dejando, además, un margen de 10 metros respecto a las mismas.

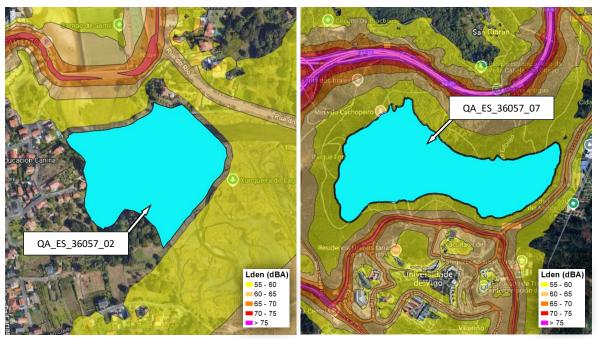


Figura 82. Ejemplo ajuste a los límites de la isófona L_{den} ≤ 55 dBA en el entorno do Lagares (izquierda) y Beade (derecha)

Un caso especial es el de la Zona Tranquila de O Castro, que no cuenta con una delimitación propia dentro del PXOM, siendo todo el entorno que ocupa un Suelo Urbano Consolidado. En este caso, la delimitación cartográfica se lleva a cabo ajustándola a los límites de los viales urbanos más próximos que delimitan el parque urbano, así como a las isófonas mencionadas anteriormente.

Figura 83. Delimitación de la Zona Tranquila de O Castro

En la siguiente tabla se recogen las características básicas de las delimitaciones cartográficas propuestas para cada zona tranquila recogida en el PAR.

ID.	ZONA	TIPO	CAPA ORIGEN	SUPERFICIE APROX. (m²)	CAPA RESULTANTE
QA_ES_36057_01	Islas Cíes	Espacio natural	SRPEN PXOM	4.500.000	The first of the second of the
QA_ES_36057_02	Xunqueira do Lagares	Espacio natural	SRPEN y SRPP PXOM	43.000	

QA_ES_36057_03	Praia do Vao	Espacio natural	SRPEN PXOM	18.000	Radi to O equipment
QA_ES_36057_04	O Castro	Parque urbano	SUC PXOM y recorte manual	105.000	
QA_ES_36057_05	A Guía	Parque urbano	SRPPX PXOM	290.000	Sand Sand Sand Sand Sand Sand Sand Sand
QA_ES_36057_06	Parques de Coruxo, Saiáns y S.M. de Oia	Parque forestal	SRPPX PXOM	2.255.000	The second of th
QA_ES_36057_07	Parque de Beade	Parque forestal	SRPF y SRPEN PXOM	790.000	
QA_ES_36057_08	Monte Alba y Mirador do Cepudo	Parque forestal	SRPPX PXOM	1.060.000	

QA_ES_36057_09	Parque de Zamáns	Parque forestal	SRPEN y SRPF PXOM	3.115.000	Cotal di Henrile O Sarinnagal
QA_ES_36057_10	O Vixiador	Parque forestal	SRPEN y SRPF PXOM	2.320.000	
QA_ES_36057_11	A Madroa	Parque forestal	SRPEN PXOM	530.000	Parad President Pres
QA_ES_36057_12	Os Pozos	Parque forestal	SRPF PXOM	635.000	Belietee Freio Many Otto A Property A Property

Tabla 64. Resumen de las delimitaciones cartográficas de las zonas tranquilas establecidas en el PAR

11.8. RESUMEN DE ZONAS TRANQUILAS

A continuación, se presentan los resultados del análisis realizado, incluyendo los niveles de día, tarde y noche, obtenidos tras la campaña de mediciones acústicas, así como la información sobre el cumplimiento de los límites considerados para la declaración de Zona Tranquila y su delimitación cartográfica.

11.8.1. Zonas que cumplen la condición

Las zonas mostradas en la siguiente tabla cumplen con las condiciones base de $L_n \le 50$ dBA y $L_{den} \le 55$ dBA establecidas como referencia para Zonas Tranquilas, a tenor de los resultados publicados en la 4° Fase del MER de Vigo, así como de las mediciones acústicas in situ y valoraciones técnicas realizadas sobre cada zona.

			L _d ((dBA)	L _e (c	dBA)	L _n (dl	ВА)	L _{den} (d	IBA)
ID.	ZONA	TIPO	MED.	COND. Z.T.	MED.	COND. ZT.	MED.	COND. ZT.	MED.	COND. ZT.
QA_ES_36057_01	Islas Cíes	Espacio natural	-	≤ 55	-	≤ 55	-	≤ 50	-	≤ 55
QA_ES_36057_02	Xunqueira do Lagares	Espacio natural	51,6	≤ 55	48,5	≤ 55	44,2	≤ 50	53,0	≤ 55
QA_ES_36057_03	Praia do Vao	Espacio natural	53,5	≤ 55	51,7	≤ 55	53,7 ^[1]	≤ 50	59,9 ^[1]	≤ 55
QA_ES_36057_04	O Castro	Parque urbano	52,8	≤ 55	50,5	≤ 55	45,9	≤ 50	54,5	≤ 55
QA_ES_36057_05	A Guía	Parque urbano	45,0	≤ 55	44,8	≤ 55	44,3	≤ 50	50,8	≤ 55
QA_ES_36057_06	Parques de Coruxo, Saiáns y S.M. de Oia	Parque forestal	36,7	≤ 55	37,1	≤ 55	35,9	≤ 50	42,6	≤ 55
QA_ES_36057_07	Parque de Beade	Parque forestal	46,5	≤ 55	47,0	≤ 55	35,4	≤ 50	47,8	≤ 55
QA_ES_36057_08	Monte Alba y Mirador do Cepudo	Parque forestal	37,5	≤ 55	37,5	≤ 55	36,5	≤ 50	43,2	≤ 55
QA_ES_36057_09	Parque de Zamáns	Parque forestal	42,6	≤ 55	45,1	≤ 55	35,0	≤ 50	45,6	≤ 55
QA_ES_36057_10	O Vixiador	Parque forestal	38,2	≤ 55	38,1	≤ 55	36,7	≤ 50	43,5	≤ 55
QA_ES_36057_11	A Madroa	Parque forestal	49,1	≤ 55	46,3	≤ 55	43,7	≤ 50	51,5	≤ 55
QA_ES_36057_12	Os Pozos	Parque forestal	40,3	≤ 55	45,0	≤ 55	40,0	≤ 50	47,4	≤ 55

^[1] El nivel medido es de origen natural, especialmente del oleaje del mar, de manera que el resto de sonidos debidos a la actividad humana, tráfico viario, etc., queda enmascarado por aquellos, por lo que se considera que CUMPLE igualmente la condición de Zona Tranquila.

Tabla 65. Resumen de los niveles de ruido medidos (MED.) en cada una de las zonas analizadas y comparación del cumplimiento de la condición de Zona Tranquila (COND. ZT.)

11.8.2. Zonas que no cumplen la condición

Adicionalmente, se han evaluado zonas residenciales que, por su ubicación y características, podrían ser consideradas Zonas Tranquilas y, no obstante, se han descartado finalmente por sus condiciones actuales.

Cabo Estay

Se han medido niveles L_{den} superiores a 60 dBA en el entorno de las urbanizaciones residenciales, predominando durante las medidas el ruido procedente de la circulación de vehículos de la zona. Dada la imposibilidad de separar el sonido del mar y de tráfico durante

las mediciones, y a que claramente el paisaje sonoro predominante es de naturaleza artificial (tráfico rodado) se estima que no procede considerarla como Zona Tranquila en las condiciones actuales.

Isla de Toralla

Teniendo en cuenta que una de las condiciones que reflejan los diferentes documentos de referencia es la accesibilidad de la zona, en este caso la Isla de Toralla no se ha considerado Zona Tranquila, puesto que se trata de una urbanización privada, con acceso restringido a residentes.

11.8.3. Delimitación cartográfica de las Zonas Tranquilas

Para todas las zonas que cumplen con las condiciones establecidas se lleva a cabo su delimitación cartográfica, en base a los datos disponibles de las capas de la revisión del PXOM de Vigo del año 2023. Por lo general se trata de suelos rústicos de protección de espacios naturales, paisajística, forestal, etc., quedándose en cada caso con la capa más representativa del entorno que engloba. Posteriormente, las capas son recortadas y ajustadas a las isófonas $L_n \le 50$ dBA y $L_{den} \le 55$ dBA, según la definición de Zona Tranquila establecida en este PAR, dejando un margen de 10 metros con respecto a las mismas.

Las Zonas Tranquilas establecidas en el PAR cubren una extensión total aproximada de 15,7 km², suponiendo en torno a un 14% de todo el territorio que abarca el municipio.

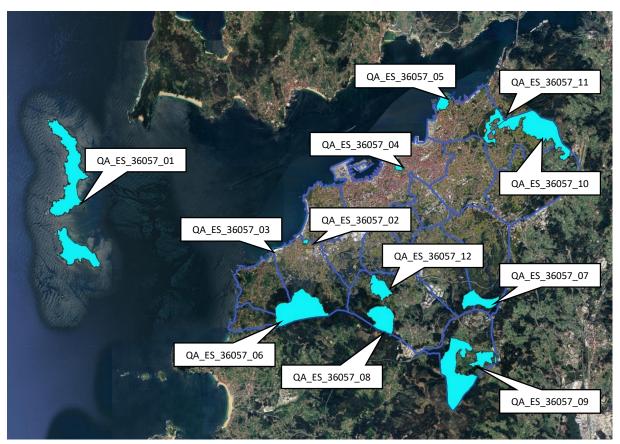


Figura 84. Ubicación de las Zonas Tranquilas consideradas en este PAR

Ecuación 2

12. ANEXO II. METODOLOGÍA DE CÁLCULO DE LOS INDICADORES DE RIESGO PARA LA SALUD

En el Anexo III del Real Decreto 1513/2005 se definen las ecuaciones que permiten calcular los indicadores de los efectos nocivos del ruido en la salud. El documento de "Instrucciones para la entrega de los datos asociados a los mapas estratégicos de ruido y planes de acción contra el ruido de la cuarta fase" proporciona, además, algunos criterios adicionales. A continuación, se detalla el método de cálculo seguido para la obtención de los indicadores correspondientes al Concello de Vigo.

12.1. DEFINICIONES

1. El Riesgo Relativo de un efecto nocivo se define como:

$$RR = \begin{pmatrix} Probabilidad \ de \ efecto \ nocivo \ en \ población \\ expuesta \ a \ un \ nivel \ específico \ de \ ruido \\ \hline Probabilidad \ de \ efecto \ nocivo \ en \ la \ población \\ no \ expuesta \ a \ ruido \ ambiental \end{pmatrix}$$

- 2. El Riesgo Absoluto de un efecto nocivo es la probabilidad de efecto nocivo en la población expuesta a un nivel específico de ruido ambiental.
- 3. Conjunto de factores de riesgo: el conjunto de factores de riesgo para la salud debido a la exposición a ruido ambiental es:
 - a. Enfermedades Cardíacas Isquémicas ECI.
 - b. Molestias Intensas MI.
 - c. Alteraciones Graves del Sueño AGS.

12.2. METODOLOGÍA DE CÁLCULO

12.2.1. Esquema general

El siguiente esquema detalla el método de cálculo seguido para la obtención del número de personas afectadas por cada uno de los factores de riesgo derivados de la exposición a ruido. Los cálculos se realizan de forma independiente para cada tipo de fuente. En el caso del Concello de Vigo, se determinan estos factores para ruido de tráfico (viario) y ferroviario.

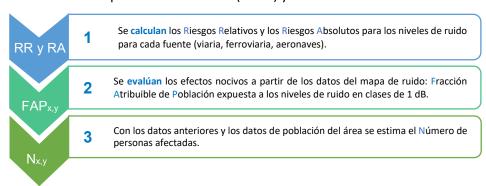


Tabla 66. Esquema de la metodología de cálculo empleada para obtener el número de personas afectadas por factores de riesgo

12.2.2. Cálculo de los Riesgos Relativos y Absolutos

1. RIESGO RELATIVO DE ENFERMEDAD CARDÍACA ISQUÉMICA (ECI):

$$RR_{ECI,i,vial} = egin{cases} e^{\left[Ln\left(rac{1.08}{10}
ight)\cdot (L_{den}-53)
ight]}; & L_{den} > 53 & {
m dBA} \ & 1 & ; & L_{den} < 53 & {
m dBA} \end{cases}$$
 Ecuación 3

Conforme al documento de instrucciones, se calcula desde 53 dBA en adelante. No existe relación dosis efecto para ruido ferroviario y de aeronaves.

2. RIESGO ABSOLUTO DE MOLESTIAS INTENSAS (MI)

$$RA_{MI,vial} = rac{78.9270 - 3.1162 \cdot L_{den} + 0.0342 \cdot L_{den}^2}{100}$$
 Ecuación 4

El rango de cálculo para ruido de tráfico es desde 46 hasta 80 dBA.

$$RA_{MI,ferroviario} = \frac{38.1596 - 2.05538 \cdot L_{den} + 0.0285 \cdot L_{den}^2}{100}$$
 Ecuación 5

En este caso, la relación dosis efecto se calcula entre 36 y 80 dBA.

3. RIESGO ABSOLUTO DE ALTERACIONES GRAVES DE SUEÑO (AGS)

$$RA_{AGS,vial} = \frac{19.4312 - 0.9336 \cdot L_{night} + 0.0126 \cdot L_{night}^2}{100}$$
 Ecuación 6

$$RA_{AGS,ferroviario} = \frac{67.5406 - 3.1852 \cdot L_{night} + 0.0391 \cdot L_{night}^2}{100}$$
 Ecuación 7

Tanto para ruido de tráfico como ferroviario, este factor se calcula para un nivel de noche entre 40 y 65 dBA.

12.2.2.1. Cálculo de los riesgos

Para la evaluación de los riesgos para la salud, en el caso del mapa de ruidos de Vigo, se divide la población expuesta en clases de 1 dB en el rango de cálculo de cada Relación Dosis Efecto (RDE). Siguiendo las recomendaciones del documento de instrucciones para la entrega de los datos de los MER y planes de acción de la 4ª fase:

- Se evalúan los riesgos de afección para la salud en todo el rango y no solo para los límites establecidos por la OMS.
- Para la población expuesta por debajo del límite de aplicabilidad se considera que no existe riesgo para la salud.
- Para la población expuesta a niveles de ruido por encima del rango de aplicabilidad, se considera como valor de la RDE el mismo que el límite superior de aplicabilidad.

12.2.2.2. Cálculo de la Fracción Atribuible de Población con riesgo de ECI

Para el cálculo de la fracción con riesgo de padecer **Enfermedades Cardiacas Isquémicas (ECI)** debido a la exposición a ruido, se procesan los resultados del mapa de ruidos en clases de 1 dB y se aplica la **Ecuación 2**, tomando como valor de L_{den} el promedio de los extremos de la banda. Así, por ejemplo, para la banda entre 53 y 54 dBA, se toma como valor para el cálculo 53,5 dBA.

Una vez calculada la relación dosis efecto (columna RR, ECI en la Tabla 67), se calcula la **Fracción Atribuible de Población expuesta con riesgo de presentar ECI**, **FAP**_{x,y}, según la siguiente ecuación:

$$FAP_{x,y} = \left(rac{\sum_j [p_j\cdot (RR_{x,y,i}-1)]}{\sum_j [p_j\cdot (RR_{x,y,i}-1)]+1}
ight)$$
 Ecuación 8

Aplicando la ecuación anterior para los datos del Concello de Vigo, resulta:

$$FAP_{x,y} = 5.48 \%$$

El **número de personas** con riesgo de ECI, N_{ECI} , atribuible a la exposición por ruido se calcula en base a la siguiente ecuación:

$$N_{ECI} = FAP_{x,y} \cdot I_y \cdot P$$
 Ecuación 9

donde:

- I_y es el porcentaje de incidencia de Enfermedades Cardíacas Isquémicas. Citando literalmente el Real Decreto 1513/2005, de 16 de diciembre, este valor "puede obtenerse a partir de estadísticas sobre salud en la región o el país en el que se encuentra dicha zona". En el "Informe Anual del Sistema Nacional de Salud" del año 2022, se presenta un dato para prevalencia media a nivel nacional del 2,3 %, mientras que en el desglose por autonomías (datos del año 2021), en el mencionado informe se proporciona un valor del 2,03 % para la comunidad autónoma gallega.
- P es la población del Concello de Vigo, en este caso, P = 291.082 habitantes.

En la Tabla 67 se muestra el resultado derivado de la exposición al ruido de la población obtenido de la 4ª fase del MER de Vigo, obteniendo un total de 324 habitantes con riesgo de desarrollar ECI por exposición a ruido. Tras la aplicación de las actuaciones definidas en el presente Plan de Acción contra el Ruido, el número de personas con riesgo de ECI pasaría a ser de 279, como se puede ver en la Tabla 68, es decir, de 45 personas menos, lo que supone aproximadamente una **reducción relativa del 13,8%**.

En cualquier caso, en términos absolutos, el número de personas de Vigo con potencial riesgo de sufrir ECI por la exposición al ruido se sitúa en torno al **0,1% del total** de población censada.

	Cálcul	o de Pob	lación con R	Riesgo de l	ECI
Interv	alo Lden	Personas Expuestas	Dato	291.082	
min	máx	24 horas	RR, ECI	Porcentaje Población , pj	pj(RR-1)
52	53	7940,8	1,000000	0,027	0,0000
53	54	9413,4	1,003855	0,032	0,0001
54	55	10447,7	1,011611	0,036	0,0004
55	56	10587,2	1,019427	0,036	0,0007
56	57	9398,9	1,027302	0,032	0,0009
57	58	8741,3	1,035239	0,030	0,0011
58	59	9072,1	1,043237	0,031	0,0013
59	60	9615,8	1,051297	0,033	0,0017
60	61	10286,6	1,059419	0,035	0,0021
61	62	12692,8	1,067604	0,044	0,0029
62	63	14515,3	1,075852	0,050	0,0038
63	64	13397,3	1,084164	0,046	0,0039
64	65	14562	1,092540	0,050	0,0046
65	66	15563,2	1,100981	0,053	0,0054
66	67	14927,6	1,109487	0,051	0,0056
67	68	13206,3	1,118058	0,045	0,0054
68	69	11727,4	1,126696	0,040	0,0051
69	70	8716,1	1,135401	0,030	0,0041
70	71	7700,1	1,144173	0,026	0,0038
71	72	4808,6	1,153012	0,017	0,0025
72	73	2046,9	1,161920	0,007	0,0011
73	74	290,4	1,170897	0,001	0,0002
74	75	751,3	1,179943	0,003	0,0005
75	76	827,3	1,189059	0,003	0,0005
76	77	315,6	1,198246	0,001	0,0002
77	78	83,5	1,207503	0,000	0,0001
78	79	7,3	1,216832	0,000	0,000
79	80	0,5	1,226233	0,000	0,000
80	81	0	1,235706	0,000	0,000
81	82	0	0,000000	0,000	0,0000
		$FAP_{x,y} = \left(\frac{1}{2}\right)^{x}$	$\frac{\sum_{j}[p_{j}\cdot(RR_{j,x,y})]}{\sum_{j}[p_{j}\cdot(RR_{j,x,y})]}$	(-1) $[-1)$ $[+1)$	0,0548
persona atribuib para ind	nero de as con ECI ble a ruido, cidencia ly 2,03 %	$N_{x,y}$ =	$=FAP_{x,y,i}$	\cdot $Iy \cdot P$	324

Tabla 67. Evaluación de Riesgo de ECI, según los datos de exposición al ruido publicados en la 4ª fase del MER de Vigo

	Cálcul	o de Pobl	ación con R	Riesgo de l	ECI
Interv	alo Lden	Personas Expuestas	Dato	s Censo :	291.082
min	máx	24 horas	RR, ECI	Porcentaje Población , pj	pj(RR-1)
52	53	9086,5	1,000000	0,031	0,0000
53	54	10863,5	1,003855	0,037	0,0001
54	55	11230,9	1,011611	0,039	0,0004
55	56	11544,9	1,019427	0,040	0,0008
56	57	10195,3	1,027302	0,035	0,0010
57	58	9174,1	1,035239	0,032	0,0011
58	59	9642,5	1,043237	0,033	0,0014
59	60	12517,2	1,051297	0,043	0,0022
60	61	14039,5	1,059419	0,048	0,0029
61	62	15162,2	1,067604	0,052	0,0035
62	63	17669,6	1,075852	0,061	0,0046
63	64	15094,5	1,084164	0,052	0,0044
64	65	13819,3	1,092540	0,047	0,0044
65	66	17554,8	1,100981	0,060	0,0061
66	67	13085,1	1,109487	0,045	0,0049
67	68	9649	1,118058	0,033	0,0039
68	69	7152,8	1,126696	0,025	0,0031
69	70	4751,7	1,135401	0,016	0,0022
70	71	2325,6	1,144173	0,008	0,0012
71	72	1315	1,153012	0,005	0,0007
72	73	867,5	1,161920	0,003	0,0005
73	74	230,6	1,170897	0,001	0,0001
74	75	79,7	1,179943	0,000	0,0000
75	76	35,1	1,189059	0,000	0,0000
76	77	28,5	1,198246	0,000	0,000
77	78	21,9	1,207503	0,000	0,000
78	79	7,3	1,216832	0,000	0,0000
79	80	0,5	1,226233	0,000	0,0000
80	81	0	1,235706	0,000	0,000
81	82	0	0,000000	0,000	0,000
		$FAP_{x,y} = \left(\frac{1}{2}\right)$	$\sum_{j} [p_j \cdot (RR_{j,x,y} - RR_{j,x,y} - RR$	$\frac{(-1)}{(-1)[+1)}$	0,0473
persona atribuib para ind	nero de as con ECI ble a ruido, cidencia ly 2,03 %	$N_{x,y}$ =	= $FAP_{x,y,i}$	\cdot $Iy \cdot P$	279

Tabla 68. Evaluación de Riesgo de ECI previsto, tras aplicación de las actuaciones descritas en el presente PAR

12.2.2.3. Cálculo de la Fracción de Población con Molestias Intensas por exposición a ruido

A partir de la Ecuación 4 y de la Ecuación 5, se procede a calcular el número de personas con riesgo de **Molestias Intensas (MI)** por exposición al ruido, multiplicando directamente la relación dosis efecto por la población del Concello de Vigo.

Los resultados relativos al número teórico de personas con riesgo de sufrir molestias intensas por exposición al ruido del **tráfico viario** se muestran en la Tabla 69, en lo relativo a los valores obtenidos de la 4ª fase del MER, y en la Tabla 70, en cuanto a los previstos tras la aplicación de las actuaciones descritas en el presente Plan de Acción contra el Ruido.

		Ruido V	ial: Cálcul	o de Pers	0	nas con N	1olestias I	Intensas			
Inte	rvalo	Per	sonas Expue	stas		Inte	valo	Per	Personas Expuestas		
min	máx	24 Horas	RA,MI, vial	Personas con MI		min	máx	24 Horas	RA,MI, vial	Personas con MI	
46	47	4986,6	0,0797265	398		64	65	14562	0,2021265	2943	
47	48	5268,6	0,0807125	425		65	66	15563,2	0,2154245	3353	
48	49	5791,1	0,0823825	477		66	67	14927,6	0,2294065	3424	
49	50	6338,1	0,0847365	537		67	68	13206,3	0,2440725	3223	
50	51	6812,5	0,0877745	598		68	69	11727,4	0,2594225	3042	
51	52	7133,9	0,0914965	653		69	70	8716,1	0,2754565	2401	
52	53	7940,8	0,0959025	762		70	71	7700,1	0,2921745	2250	
53	54	9413,4	0,1009925	951		71	72	4808,6	0,3095765	1489	
54	55	10447,7	0,1067665	1115		72	73	2046,9	0,3276625	671	
55	56	10587,2	0,1132245	1199		73	74	290,4	0,3464325	101	
56	57	9398,9	0,1203665	1131		74	75	751,3	0,3658865	275	
57	58	8741,3	0,1281925	1121		75	76	827,3	0,3860245	319	
58	59	9072,1	0,1367025	1240		76	77	315,6	0,4068465	128	
59	60	9615,8	0,1458965	1403		77	78	83,5	0,4283525	36	
60	61	10286,6	0,1557745	1602		78	79	7,3	0,4505425	3	
61	62	12692,8	0,1663365	2111		79	80	0,5	0,4734165	0	
62	63	14515,3	0,1775825	2578		80		0	0,4969745	0	
63	64	13397,3	0,1895125	2539			TOTAL PE	RSONAS		44.498	

Tabla 69. Número de personas con riesgo de sufrir Molestias Intensas (MI) por ruido de tráfico viario, según los datos de exposición publicados en la 4ª fase del MER de Vigo

		Ruido V	ial: Cálcul	lo de Pers	0	nas con N	/lolestias	Intensas		
Inte	rvalo	Per	sonas Expue	stas		Inte	rvalo	Personas Expuestas		
min	máx	24 Horas	RA,MI, vial	Personas con MI		min	máx	24 Horas	RA,MI, vial	Personas con MI
46	47	5269,5	0,0797265	420		64	65	13819,3	0,2021265	2793
47	48	5591,7	0,0807125	451		65	66	17554,8	0,2154245	3782
48	49	6008	0,0823825	495		66	67	13085,1	0,2294065	3002
49	50	6579,8	0,0847365	558		67	68	9649	0,2440725	2355
50	51	7305,7	0,0877745	641		68	69	7152,8	0,2594225	1856
51	52	7610,5	0,0914965	696		69	70	4751,7	0,2754565	1309
52	53	9086,5	0,0959025	871		70	71	2325,6	0,2921745	679
53	54	10863,5	0,1009925	1097		71	72	1315	0,3095765	407
54	55	11230,9	0,1067665	1199		72	73	867,5	0,3276625	284
55	56	11544,9	0,1132245	1307		73	74	230,6	0,3464325	80
56	57	10195,3	0,1203665	1227		74	75	79,7	0,3658865	29
57	58	9174,1	0,1281925	1176		75	76	35,1	0,3860245	14
58	59	9642,5	0,1367025	1318		76	77	28,5	0,4068465	12
59	60	12517,2	0,1458965	1826		77	78	21,9	0,4283525	9
60	61	14039,5	0,1557745	2187		78	79	7,3	0,4505425	3
61	62	15162,2	0,1663365	2522		79	80	0,5	0,4734165	0
62	63	17669,6	0,1775825	3138		80		0	0,4969745	0
63	64	15094,5	0,1895125	2861			TOTAL PI	ERSONAS		40.606

Tabla 70. Número de personas con riesgo de sufrir Molestias Intensas (MI) por ruido de tráfico viario, previstos tras la aplicación de las actuaciones descritas en el presente Plan de Acción contra el Ruido

Con la aplicación de las actuaciones descritas en el presente PAR se estima una **reducción relativa del 8,75%** en el número potencial de personas con molestias intensas por exposición al ruido viario. En términos absolutos, el porcentaje de población potencialmente expuesta a MI por ruido viario pasaría del 15,3% (MER 4ª fase) al 13,9% (tras aplicación de este PAR).

En cuanto al ruido debido al **tráfico ferroviario**, no hay población expuesta a niveles superiores a 62 dBA, por tanto, este es el último valor calculado en la Tabla 71. En cualquier caso, el número de personas potencialmente expuestas a ruido ferroviario se estima en menos de un centenar.

	R	uido Ferr	oviario: Ca	álculo de I	Pe	ersonas co	n Molesti	as Intensa	as	
Inter	rvalo	Pei	rsonas Expues	stas		Inte	rvalo	Personas Expuestas		
min	máx	24horas	RA,MI, ferroviario	Personas con MI		min	máx	24horas	RA,MI, ferroviario	Personas con MI
36	37	460,9	0,011	5		50	51	84,8	0,070	6
37	38	593,5	0,012	7		51	52	34,4	0,079	3
38	39	595,2	0,013	8		52	53	38	0,088	3
39	40	480,1	0,014	7		53	54	30,2	0,098	3
40	41	629,7	0,017	10		54	55	15	0,108	2
41	42	636,7	0,019	12		55	56	3,1	0,119	0
42	43	658	0,023	15		56	57	6,5	0,130	1
43	44	616,9	0,027	17		57	58	4,7	0,142	1
44	45	390,5	0,031	12		58	59	0	0,155	0
45	46	374,7	0,036	14		59	60	0	0,168	0
46	47	241,8	0,042	10		60	61	0	0,181	0
47	48	262,8	0,048	13		61	62	0	0,195	0
48	49	247,2	0,055	14		62	63	0	0,210	0
49	50	521,1	0,063	33			TOTAL P	ERSONAS		88

Tabla 71. Número de personas con riesgo de sufrir molestias intensas (MI) por ruido de tráfico ferroviario, según los datos de exposición publicados en la 4ª fase del MER de Vigo

12.2.2.4. Cálculo de la Fracción de Población con Alteraciones Graves de Sueño

Para el cálculo de población potencialmente afectada por **Alteraciones Graves de Sueño (AGS)** debido a la exposición al ruido, se hace uso de la Ecuación 6 y de la Ecuación 7, conjuntamente con los porcentajes de población expuesta a los niveles nocturnos en intervalos de 1 dB, aunque el límite de cálculo para la relación dosis efecto en este caso es entre 40 y 65 dBA. En los campos sombreados en gris se aplica la Relación Dosis Efecto correspondiente al límite máximo del cálculo (65 dBA).

			Ruido Vial	: Cálculo (de	Persona	s con AG	S		
Inte	rvalo	Per	sonas Expue	stas		Inte	rvalo	Per	sonas Expue	stas
min	máx	Noche	RA,AGS,vial	Personas con AGS		min	máx	Noche	RA,AGS,vial	Personas con AGS
40	41	6730,3	0,023	153,959		56	57	13774,9	0,069	951,178
41	42	7231,8	0,024	172,634		57	58	12539,5	0,074	928,920
42	43	7675,6	0,025	192,807		58	59	12355,5	0,079	980,526
43	44	8904,7	0,027	237,039		59	60	7531,1	0,085	639,326
44	45	10556,3	0,028	299,498		60	61	5936,4	0,091	538,286
45	46	13483,8	0,030	409,577		61	62	4680,4	0,097	452,649
46	47	12725,4	0,033	415,249		62	63	2471,9	0,103	254,604
47	48	12351,5	0,035	434,026		63	64	782,6	0,110	85,726
48	49	11938	0,038	452,444		64	65	368	0,116	42,810
49	50	13329,7	0,041	545,338		65	66	420,6	0,116	48,929
50	51	14019,9	0,044	619,336		66	67	652,2	0,116	75,871
51	52	11399,2	0,048	543,645		67	68	496,8	0,116	57,793
52	53	10944	0,051	563,173		68	69	255,3	0,116	29,699
53	54	10944,3	0,055	607,184		69	70	63	0,116	7,329
54	55	10179,8	0,060	608,258		70	71	0,3	0,116	0,035
55	56	12430,1	0,064	798,951		71	72	0	0,116	0,000
			•	•			TOTAL P	ERSONAS		12.147

Tabla 72. Evaluación de Alteraciones Graves de Sueño (AGS) por ruido de tráfico viario, según los datos de exposición publicados en la 4ª fase del MER de Vigo

		· ·	Ruido Vial	: Cálculo d	le F	Persona	s con AG	S		
Inte	rvalo	Per	sonas Expue	stas		Inte	rvalo	Per	sonas Expue	stas
min	máx	Noche	RA,AGS,vial	Personas con AGS		min	máx	Noche	RA,AGS,vial	Personas con AGS
40	41	7271,3	0,023	166,335		56	57	12207,6	0,069	842,953
41	42	7741,1	0,024	184,792		57	58	9875	0,074	731,535
42	43	8366,9	0,025	210,172		58	59	8078,9	0,079	641,137
43	44	10062,7	0,027	267,864		59	60	3493,9	0,085	296,602
44	45	12303,9	0,028	349,080		60	61	2614,6	0,091	237,080
45	46	14735	0,030	447,583		61	62	962,4	0,097	93,075
46	47	14589,4	0,033	476,074		62	63	916,9	0,103	94,440
47	48	15103,4	0,035	530,726		63	64	420,3	0,110	46,039
48	49	15134,5	0,038	573,590		64	65	121,9	0,116	14,181
49	50	16596,6	0,041	678,992		65	66	46,1	0,116	5,363
50	51	14352	0,044	634,007		66	67	14,1	0,116	1,640
51	52	11335,1	0,048	540,588		67	68	22,7	0,116	2,641
52	53	12507,2	0,051	643,614		68	69	9	0,116	1,047
53	54	11041,6	0,055	612,582		69	70	1,5	0,116	0,174
54	55	9732,9	0,060	581,555		70	71	0,3	0,116	0,035
55	56	13173,6	0,064	846,740		71	72	0	0,116	0,000
							TOTAL PE	RSONAS		10.739

Tabla 73. Evaluación de Alteraciones Graves de Sueño (AGS) por ruido de tráfico viario, previstos tras la aplicación de las actuaciones descritas en el presente Plan de Acción contra el Ruido

En términos absolutos, el número teórico de personas potencialmente expuestas a AGS se sitúa en torno al 4% de la población total de Vigo. Con la aplicación de las actuaciones previstas en el presente Plan de Acción contra el Ruido (Tabla 73), dicha exposición disminuiría en unas 1.400 personas en comparación con los datos de exposición relativos a la 4ª fase del MER (Tabla 72). Esto supondría aproximadamente una **reducción relativa del 11,6%**.

En cuanto al ruido debido al **tráfico ferroviario**, no hay población potencialmente expuesta a AGS por niveles superiores a 50 dBA. En cualquier caso, el número teórico de personas que podrían sufrir algún tipo de AGS por ruido ferroviario se estima en torno a las 2 decenas, según lo mostrado en la siguiente tabla.

Ruido Ferroviario: Cálculo de Personas con AGS									
Intervalo		Personas Expuestas							
min	máx	Noche	RA,AGS, ferrroviario	Personas con AGS					
40	41	305,5	0,027	8,168					
41	42	392,1	0,027	10,566					
42	43	59	0,028	1,648					
43	44	37,3	0,030	1,108					
44	45	40,3	0,032	1,300					
45	46	14,8	0,036	0,527					
46	47	12,9	0,040	0,512					
47	48	5,5	0,045	0,245					
48	49	6,7	0,050	0,337					
49	50	1,4	0,057	0,079					
50	51	0	0,064	0,000					
51	52	0	0,072	0,000					
52	53	0	0,081	0,000					
	24								

Tabla 74. Evaluación de Alteraciones Graves de Sueño (AGS) por ruido de tráfico ferroviario, según los datos de exposición publicados en la 4ª fase del MER de Vigo

12.3. RESUMEN DE INDICADORES DE RIESGO PARA LA SALUD POR EXPOSICIÓN AL RUIDO

La siguiente tabla muestra un resumen con los resultados teóricos obtenidos en los diferentes indicadores de riesgo para la salud por exposición a ruido en el Concello de Vigo, en base a lo descrito en los apartados anteriores.

INDICADORES SEGÚN SITUACIÓN MER 4ªFASE (AÑO 2022)										
	ECI		MI		AGS					
Fuente	Personas	%	Personas	%	Personas	%				
Ruido Tráfico	324	0,11%	44.498	15,29%	12.147	4,17%				
Ruido Ferroviario	-	-	88	0,03%	24	0,008%				
INDICADORES SEGÚN SITUACIÓN PREVISTA TRAS PAR 2024										
	ECI (PAR)		MI		AGS					
Fuente	Personas	%	Personas	%	Personas	%				
Ruido Tráfico	279	0,10%	40.606	13,95%	10.739	3,69%				
Ruido Ferroviario	-	-	88	0,03%	24	0,008%				

Tabla 75. Resumen de los indicadores de riesgo para la salud entre la situación del MER 4ªfase y del PAR

